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Abstract

We describe the non-Gorenstein loci of normal toric varieties. In the
case of Hibi rings, a combinatorial description‘ is provided in terms of the
underlying partially ordered set. As a non-toric application we compute
the dimensions of the non-Gorenstein loci of the first secant variety of
Segre varieties.

1 Introduction

In this paper we study a local measure for singularity which is based on a natural
generalization of smoothness, the Gorenstein property.

The combinatorial properties of a polyhedral cone are deeply linked to the
singularities of the associated toric variety. There are several results in this
direction based on the following theorem proved in [HHS19]: the non-Gorenstein
locus of a graded ring R with canonical module ω is the the set of prime ideals
containing the trace ideal

tr(ω) =
∑

ϕ∈HomR(ω,R)

ϕ(ω).

This makes the ideal tr(ω) a measure for singularity.
The aim of this paper is to provide a clear relation between the combinatorics

of the polyhedral cone and the geometry of the toric variety. In particular,
Theorem 2.8 in Chapter 2 describes the non-Gorenstein loci of toric varieties.
This is a vast generalization of results in [HMP19] (Theorem 4.9), where Herzog,
Mohammadi and Page give criteria for certain simplicial toric varieties to be
Gorenstein on the punctured spectrum.

As an application of the toric framework developed in section 2, we proceed
with an investigation of non-Gorenstein loci of Hibi rings in section 3 and 4,
and as a non-toric application we study secants of Segre varieties in the last
section. The separate treatment of the toric case enables us to give particularly
conceptual results and comparatively short and clear proofs.

A Hibi ring k[P ] is a toric algebra associated to a finite, partially ordered
set P whose combinatorial properties determine the geometry of the associ-
ated toric variety Spec(k[P ]). They were introduced 1987 by Takayuki Hibi in
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[Hib87]. Initially, Hibi rings were studied because of their appearance as flat
degenerations of the coordinate rings of Grassmannians and, more generally,
flag varieties. For a construction of these deformations consider [DCEP82], and
for a more modern construction using Sagbi bases consider [CHT06].

Nowadays Hibi rings are objects of interest in their own, and appear in
various geometric, algebraic and combinatorial contexts. Consider for example
[HH05], [EHM11], [How05], [KP18]. The non-Gorenstein loci of Hibi rings have
been subject to extensive study: a Hibi ring k[P ] is Gorenstein if and only if P
is a pure poset, that is, all maximal chains of P have the same length ([Hib87],
Corollary 3.d). In [HMP19] it is shown that the non-Gorenstein locus is zero-
dimensional if and only if each connected component of P is pure. In an attempt
to find a good regularity condition weaker than the Gorenstein property, but
stronger than the Cohen-Macaulay property, in [HHS19], Herzog, Hibi, and
Stamate define k[P ] to be nearly Gorenstein if tr(ω) is the graded maximal
ideal. They prove that k[P ] is almost Gorenstein if and only if all connected
components Pi of P are pure, and the difference in their ranks is bounded by
one. In [MP20] (Theorem 4.5), Miyazaki and Page give a description of the
radical of tr(ω) in combinatorial terms. By proving Theorem 3.8 and Theorem
3.6, we give a new characterization of

√
tr(ω) in a more conceptual, simple,

and natural manner that unifies the above results. Ultimately, we measure the
deviation of Spec(k[P ]) from being Gorenstein, by how much P deviates from
being graded, in a precise sense, relating a geometric and a combinatorial notion
of irregularity. These results take advantage of the discussion in section 2.

In Chapter five we proceed with an application of Theorem 2.8 to the non-
toric case: the first secant variety of the Segre variety

P(V1)× · · · × P(Vn) ↪−→ P(V1 ⊗ · · · ⊗ Vn)

is the closure of all tensors of rank ≤ 2. Secants of Segre varieties are objects in
classical algebraic geometry that are connected to the border rank of tensors,
and to the computational complexity of matrix multiplication. In [MOZ14] the
first secant variety, and in particular its singularities, are studied using meth-
ods from statistics. The most important tool are secant-cumulant coordinates.
They are a special case of L-cumulants introduced in [Zwi12], and the induced
coordinate change identifies affine, open patches of the secant variety with cer-
tain toric varieties. We extend the results of [MOZ14] in the last chapter, the
main result being Theorem 5.1.

2 The toric trace ideal

Our notation is close to [CLS11], which is the source that we refer to for infor-
mation about toric varieties.

Let N be a free abelian group of rank n with dual M = Hom(N,Z), and
let σ ⊆ NR = N ⊗ R be a rational, pointed cone. We denote its dual cone
σ∨ = {l ∈MR| l(σ) ⊆ R≥0} and consider the normal toric ring R = k[σ∨ ∩M ],
where k is an algebraically closed field in characteristic 0.
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To a ray ρ of σ with primitive ray generator uρ ∈ N , we associate the
torus-invariant prime-divisor Dρ. It is defined by the ideal Iρ, spanned by all
monomials away from the facet defined by ρ:

Iρ := 〈χm| m ∈ σ∨ ∩M, 〈uρ,m〉 > 0〉.

The negative sum K =
∑
ρ−Dρ of all torus-invariant, prime Weyl-divisors is

referred to as the canonical divisor of the toric variety X = Spec(R). The
module ω = Γ(OX(K)) is called the canonical module of R. In [HHS19] the
non-Gorenstein locus of X is described as the vanishing locus of its trace ideal:

Definition 2.1. The trace ideal of a module M of R is generated by the images
of all R-module morphism ϕ : M −→ R.

tr(M) :=
∑

ϕ∈HomR(M,R)

ϕ(M).

Lemma 2.2 ([HHS19], Lemma 2.1). For every prime p ∈ Spec(R), Rp is not
Gorenstein if and only if tr(ω) ⊆ p.

In other words, the non-Gorenstein locus of X is the vanishing locus of the
radical

√
tr(ω). In the remainder of this section we determine the minimal

primes lying over tr(ω), i.e. the irreducible components of the non-Gorenstein
locus.

The canonical module ω is spanned by all monomials in the polyhedron

PK = {x ∈MR| ∀ρ : 〈uρ, x〉 ≥ 1},

which is obtained by translating all facets of σ∨ into the interior by one lattice-
length. Similarly, its dual ω∨ = HomR(ω,R) is the module generated by the
monomials in the polyhedron

P−K = {x ∈MR| ∀ρ : 〈uρ, x〉 ≥ −1}.

We now proceed with a polyhedral description of the homogeneous ideal tr(ω).

Proposition 2.3. The trace ideal tr(ω) is generated by all monomials χm+m′ ,
where m ∈ PK ∩M, and m′ ∈ P−K ∩M . In particular, tr(ω) is M−graded.

Proof. By definition ω is the module of global sections of the sheaf O(K) as-
sociated to the canonical divisor. Its dual module ω∨ is the module of global
sections Γ(O(−K)):

ω∨ =
⊕

div(χm)−K≥0

k · χm =
⊕

m∈P−K∩M
k · χm.

Both ω and ω∨ are submodules of the function field K(X). Evaluation of an
element of σ∨ at an element of σ is multiplication within K(X). So tr(ω) is the
product ω∨ω in K(X), and the statement of the proposition follows.
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Let p be a prime in Spec(R), minimal with the property that it contains
tr(ω). Since tr(ω) is graded, p is as well, and by the orbit-cone correspondence
it is associated to a face F of σ∨:

p = 〈χm| m ∈ (σ∨ ∩M) \ F 〉.

To decide whether an arbitrary graded prime p, associated to a face F of
σ∨, contains tr(ω), we make the following definition:

Definition 2.4. Let

F [1] := {x ∈MR| ∀ρ, uρ ∈ F⊥ : 〈uρ, x〉 = 1}

be the affine-linear space that is the intersection of all facet-defining hyperplanes
containing F , translated by one lattice-length into the interior of σ∨.

Example 2.5. In this example σ is the planar cone given by the inequalities
2y ≥ x, 2y ≥ −x. The face F is the point (0, 0), and F [1] is the point (0, 0.5).

x

y

−3 −2 −1 0 1 2 3
0

1

The following theorem characterizes the graded primes lying over tr(ω) in
terms of F [1]:

Theorem 2.6. Let p ⊆ R be a graded prime defined by a face F of σ∨. Then
tr(ω) ⊆ p holds if and only if F [1] does not contain a lattice point.

Proof. Towards a contradiction we assume tr(ω) ⊆ p, and that there is a lattice
point z in F [1]. Let w be a lattice point in the relative interior of F . Then for
every primitive generator uρ of σ the following inequalities hold.

〈uρ, w〉 > 0, if uρ 6∈ F⊥, 〈uρ, w〉 = 0, if uρ ∈ F⊥.

After replacing w with a positive integer multiple, we may assume the inequality
〈uρ, w〉 > 〈uρ, z〉 + 1 to hold for all uρ not in F⊥. Then w − z ∈ P−K and
z + w ∈ PK . We obtain

2w = (w − z) + (z + w) ∈ P−K ∩M + PK ∩M.

By Proposition 2.3 χ2w lies in
√

tr(ω). χ2w is not contained in p, and hence the
radical of tr(ω) is not contained in p. Thus, tr(ω) is not contained either.
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For the other direction let χw ∈ tr(ω) \ p. Then w lies in F , and by Propo-
sition 2.3 there is an element z ∈ PK ∩M with w − z ∈ P−K :

−〈uρ, z〉 = 〈uρ, w − z〉 ≥ −1

holds for all uρ in F⊥. So 〈uρ, z〉 ≤ 1, and hence 〈uρ, z〉 = 1 since z ∈ PK . We
obtain z ∈ F [1].

Remark 2.7. Theorem 2.6 can easily be generalized to normal toric varieties
that are not affine. We use the notation from [CLS11]. Let X be a normal toric
variety defined by a fan Σ of rational, pointed cones in NR, Y ⊆ X a non-empty
torus-invariant subvariety, given by a cone σ ∈ Σ.

Theorem 2.8. The subvariety Y is contained in the non-Gorenstein locus Z if
and only if there is no element m of M , such that 〈uρ,m〉 = 1 holds for every
ray ρ of σ.

Proof. Both Z and Y are closed. Since Y intersects the affine open scheme
Spec(k[σ∨∩M ]) in Spec(k[σ⊥∩M ]), we may replace Y with Spec(k[σ⊥∩M ]), X
with Spec(k[σ∨∩M ]), and Z with the non-Gorenstein locus of Spec(k[σ∨∩M ]).

By Lemma 2.2 and Theorem 2.6, Y is contained in Z if and only if for the
choice F = σ⊥, F [1] does not contain a lattice point. In other words, if there is
no element m of M with

uρ ∈ (σ⊥)⊥ =⇒ 〈uρ,m〉 = 1

for every ray ρ of σ. All ray generators of σ are contained in (σ⊥)⊥ = σ−σ.

3 Non-Gorenstein loci of Hibi rings

Hibi rings are certain toric rings associated to finite, partially ordered sets. We
recall a description of the the associated polyhedral cone, and apply the results
from the previous chapter. Finally, Theorem 2.8 describes the non-Gorenstein
locus as a combinatorial measure for how far posets deviate from being graded,
relating a geometric and a combinatorial notion of irregularity.

We call a set P , together with a transitive, reflexive order ≤, a partially
ordered set, or poset. To elements a ≤ b of P we associate the interval [a, b] :=
{x ∈ P | a ≤ x ≤ b}, and call P bounded if P is the interval [a, b] for some
elements a and b.

For different elements a ≤ b, the covering relation al b is defined to hold if
#[a, b] = 2. That is, no elements lie properly between a and b.

We call a totally ordered poset a1 ≤ · · · ≤ ar of cardinality r a chain of
length r− 1. P is defined to be pure if all chains contained in P , maximal with
respect to inclusion, have the same length.

The set I(P ) of subsets I ⊆ P , that are closed from below, is called the
lattice of order ideals.
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Definition 3.1. Let P be a finite poset and let k[t, xp, p ∈ P ] be the free
k-algebra in the variables xp for all p in P , and the variable t. For each order
ideal I we denote the monomial

xI :=
∏
p∈I

xp.

The k-algebra R(P ) generated by all monomials txI , where I runs over all
poset-ideals, is the Hibi-ring associated to P .

In fact, R(P ) is the normal toric ring k[C(P ) ∩ M ] associated to a cone
C(P ), and of Krull-dimension #P + 1 ([Hib87]). The cone

C(P ) = {ψ : P −→ R| ∀a, b ∈ P : a ≤ b =⇒ ψ(a) ≥ ψ(b) , ψ(∞) = 0}

consists of the order-reversing maps from P := P ∪̇{−∞,∞} to R, taking 0 as
minimal value. It is the cone over the order-polytope

Q(P ) := {ψ ∈ C(P )| ψ(−∞) = 1}.

The generators of R(P ), the order ideals, and the vertices of Q(P ), are in natural
bijection, as can be seen by associating to an order ideal I the vertex ψI of the
order- polytope Q(P ):

ψI : P −→ Z

p 7−→

{
1, for p ∈ I ∪ {−∞}
0, for p /∈ I ∪ {−∞}

.

The faces of C(P ) have a combinatorial description. The maximal proper
faces, called facets, are in bijective correspondence to the order relations:

Falb := {ψ ∈ C(P )| ψ(a) = ψ(b)}.

More generally, faces of C(P ) are families of functions ψ that are constant along
certain equivalence relations on P :

Definition 3.2. Let P be a finite poset. A quotient poset of P is a poset P ′

together with a surjective, order preserving map φ : P −→ P ′ with connected
fibres, such that the order relation on P ′ is the transitive hull of the relation
a′ ≤′ b′ := ∃a ∈ φ−1(a′), b ∈ φ−1(b′) | a ≤ b.

Definition 3.3. Let φ : P � P ′ be a quotient poset of P . We denote by Fφ
the face

Fφ :=
⋂
alb,

φ(a)=φ(b)

Falb

of C(P ), consisting of the functions ψ that are constant on the fibres of φ.
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This definition bijectively identifies quotient posets and (possibly empty)
faces of C(P ) ([Gei81]). The inclusion order of faces corresponds to the refine-
ment order of those equivalence relations ∼φ, that identify the fibres of φ.

Example 3.4. Consider the partially-ordered set P = {p1, p2, p3} with only
the relation p1 ≥ p2.

P :

p2

p1

p3

∞

−∞
(a)

ψ(p1)

ψ(p2)

ψ(p3)

(b)

There are nine faces of Q(P ) of dimension one, corresponding to order pre-
serving, surjective maps to the unique bounded, partially ordered set q0 ≤ q1 ≤
q2 with three elements. We give a list that matches the one-dimensional faces
F to the fibres of φ.

Nr. F φ−1(q2) φ−1(q1) φ−1(q0)
1 conv({(0, 0, 0), (0, 0, 1)}) {∞, p1, p2} {p3} {−∞}
2 conv({(0, 0, 0), (0, 1, 0)}) {∞, p1, p3} {p2} {−∞}
3 conv({(0, 0, 0), (1, 1, 0)}) {∞, p3} {p1, p2} {−∞}
4 conv({(0, 0, 1), (0, 1, 1)}) {p1,∞} {p2} {p3,−∞}
5 conv({(0, 0, 1), (1, 1, 1)}) {∞} {p1, p2} {p3,−∞}
6 conv({(0, 1, 0), (0, 1, 1)}) {p1,∞} {p3} {p2,−∞}
7 conv({(0, 1, 0), (1, 1, 0)}) {p3,∞} {p1} {p2,−∞}
8 conv({(0, 1, 1), (1, 1, 1)}) {∞} {p1} {p3, p2,−∞}
9 conv({(1, 1, 0), (1, 1, 1)}) {∞} {p3} {p1, p2,−∞}

Applying the results from Chapter 3 now allows us to characterize the non-
Gorenstein locus in terms of non-graded subsets of P :

Definition 3.5. Let P be a finite poset. We call P graded if there is an order-
reversing map ψ : P −→ Z, such that for every covering relation al b it holds
ψ(a) = ψ(b) + 1. ψ is called a grading of P .
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Let the face Fφ of C(P ) be defined by a quotient poset φ : P � P ′, as in
definition 3.3.

Theorem 3.6. Fφ[1] contains a lattice point if and only if every fibre of φ,
equipped with the restricted order relation, is graded.

Proof. By definition, Fφ is the intersection

Fφ =
⋂
alb,

φ(a)=φ(b)

Falb

of all facets Falb, where a and b are elements in the same fibre. Each such facet
is supporting, so we obtain

Fφ[1] = {ψ ∈MR| ∀al b, φ(a) = φ(b) : ψ(a) = ψ(b) + 1},

and consequently the lattice points of Fφ[1] are functions ψ that define a grading
of each fibre of φ, showing the implication from left to right. Conversely, a
separate choice of gradings on each fibre together form an integral element of
F [1].

The remainder of this chapter is devoted to characterizing the maximal com-
ponents of the non-Gorenstein locus.

Lemma 3.7. The subsets A ⊆ P that appear as fibres of quotient poset maps
φ : P −→ P ′ are determined by the property that they be connected and

a ≤ b ≤ c, a, c ∈ A =⇒ b ∈ A.

Proof. To see that every such subset A appears as a fibre, define P ′ := P \A∪{?}
with the natural quotient map φA : P → P ′, and equip it with the transitive
closure of the relation a′ ≤′ b′ := ∃a ∈ φ−1A (a′), b ∈ φ−1A (b′) | a ≤ b. The other
direction is clear.

We call subsets A ⊆ P , appearing as fibres, complete. For any quotient
poset morphism φ, having a non-graded fibre A, consider the face FφA

defined
in the proof above. It determines a subvariety of the non-Gorenstein locus that
is a superset of the variety determined by Fφ. We obtain:

Theorem 3.8. The map
A 7−→ FφA

bijectively identifies the maximal components of the non-Gorenstein locus with
subsets A of P , that are minimal with the property that they be complete and
not graded.

Corollary 3.9. The dimension of the non-Gorenstein locus is max{#P−#A+
2}, where A runs over all non-graded, complete subsets of P .
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Proof. The cone C(P ) has dimension #P + 1 and the cone C(P \A∪{?}) is of
dimension #P −#A+ 2.

Corollary 3.10. The codimension of the non-Gorenstein locus is at least 4.

Proof. Every non-graded sub-poset A ⊆ P has at least 5 elements.

Remark 3.11. Corollary 3.9, generalizes the already known characterizations
of Gorenstein Hibi rings and Hibi rings that are Gorenstein on the pointed
spectrum. By the corollary, the non-Gorenstein locus is empty if and only if
P is graded. Since P is a bounded poset, it is graded if and only if it is pure,
which holds if and only if P is pure.

Similarly, by the corollary, the locus is zero-dimensional if and only if P ∪̇{∞}
and P ∪̇{−∞} are graded. It is easy to show that this is equivalent to every con-
nected component of P being pure (for a proof consider Lemma 5.2 in [HHS19]).

4 Comparison to [MP20]

In the paper [MP20], non-Gorenstein loci of Hibi rings are studied. In particu-
lar, a family of graded ideals is described in Theorem 4.5, that intersect in the
radical ideal

√
tr(ω). In this chapter we compare results and deduce Theorem

4.5 from the discussion in Chapter 3.

To state Theorem 4.5 we need the definitions of rank and distance of elements
a ≤ b in a poset P : the rank rank(a, b) is defined to be the maximal length r−1 of
a chain a = a1la2 < · · ·lar = b. Similarly, the distance dist(a, b) is defined to be
the minimal length r−1 of an inclusion-maximal chain a = a1la2l· · ·lar = b.

Definition 4.1. Let u be a natural number and

a1 < b1 > a2 < · · · > au < bu > a1

be elements of P , satisfying the inequality

u∑
i=1

rank(ai, bi) > dist(a2, b1) + · · ·+ dist(au, bu−1) + dist(a1, bu). (1)

We define the graded prime ideal

p(a1,...,au,b1,...,bu) := 〈χψ|ψ ∈ C(P ), ψ nonconstant on {a1, . . . , au, b1, . . . , bu}〉.

Theorem 4.2. (4.5, [MP20]) The ideal
√

tr(ω) is the intersecion of primes√
tr(ω) =

⋂
(a1,...,au,b1,...,bu)

p(a1,...,au,b1,...,bu).
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By our description of the minimal primes lying over tr(ω), the monomials χψ

that lie in the radical
√

tr(ω) are characterized by the property that ψ be non-
constant on all non-graded, complete subsets of P . The observation to make is
that, given a complete subset A of P , there exist elements (a1, . . . , au, b1, . . . , bu)
in A satisfying inequality (1), if and only if A is not graded. This proves the
inclusion from right to left. Conversely, the union of all intervals [ai, bj ] forms
a non-graded, complete subset A of P , showing the other inclusion.

5 Secants of Segre varieties

We start by introducing notation: let k1 ≤ · · · ≤ kn be natural numbers, n ≥ 2,
and for each index i let Vi denote a linear space of dimension ki. The image of
the Segre map

P(V1)× · · · × P(Vn) −→ P(V1 ⊗ · · · ⊗ Vn)

(v1, . . . , vn) 7−→ v1 ⊗ · · · ⊗ vn

consists of all rank one tensors. Its first secant variety Sec(k1, . . . , kn) is the
Zariski-closure of the set of all tensors of rank ≤ 2. In [MOZ14], an affine open
covering of Sec(k1, . . . , kn) is constructed, such that each patch is isomorphic to
the trivial vector bundle of rank k1 + · · · + kn over a certain toric variety X.
X is the spectrum of the toric k-algebra k[σ∨ ∩ Z1+k1+···+kn ], where σ∨ is the
polyhedral cone

σ∨ = {
(
q0, q

1
1 , . . . , q

1
k1 , . . . , q

n
1 , . . . , q

n
kn

)
∈ R1+(k1+···+kn) |

qij ≥ 0 ∀1 ≤ i ≤ n, 1 ≤ j ≤ ki,

q0 −
ki∑
j=1

qij ≥ 0 for 1 ≤ i ≤ n,

n∑
i=1

ki∑
j=1

qij − 2q0 ≥ 0}.

σ∨ is the cone over the polytope Q = C ∩ {q0 = 1}, which is the product
of n simplices ∆ki of respective dimension ki, intersected with the halfspace
{
∑
i,j q

i
j ≥ 2}.

Using Theorem 2.6, one can show that the non-Gorenstein locus of the secant
variety is the trivial vector bundle of rank k1 + · · · + kn over the locus of X.
This is done by expressing the faces of the cone σ∨ × R≥0, that contribute to
the non-Gorenstein locus, as products F × R≥0.

We from now on assume that the non-Gorenstein locus is not empty. Ac-
cording to [MOZ14] (Theorem 7.18), this happens in all but the following cases.

• n = 5, : k5 = 1,

• n = 3 : (k1, k2, k3) ∈ {(1, 1, 1), (1, 1, 3), (1, 3, 3), (3, 3, 3)},
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• n = 2 : k2 = k1, or k1 = 1.

In the the remainder of this section we investigate which positive-dimensional
faces F of σ∨ contribute to non-Gorenstein locus of X, by applying Theorem
2.6. We show that any maximal such face is a cone over a product ∆kl ×∆km

for distinct indices l and m, and decide the existence of such faces. Ultimately
we obtain

Theorem 5.1. If X is not Gorenstein, the non-Gorenstein locus of X is of
dimension

•max{kl + km + 1, where l 6= m,
∑
i6=l,m

ki 6= 3} if n ≥ 4 or n = 3, k1 > 1,

• k2 + k3 + 1 if n = 3, k2 6= 1,

• 0 else.

Proof. By construction of the cone σ∨, its dual cone σ is generated by the
vectors

• Rij := eij , ∀1 ≤ i ≤ n, 1 ≤ j ≤ ki,

• Li := e0 −
∑ki
j=1 e

i
j , ∀1 ≤ i ≤ n,

• S :=
∑n
i=1

∑ki
j=1 e

i
j − 2e0.

Here the vectors eij denote the standard basis of Rk1+···+kn . A list of the prim-
itive ray generators of σ is given in the proof of Theorem 7.18 in [MOZ14]: in
the case n = 4, all generators of σ are ray generators. If n = 3, all Ri1 with
ki = 1 are omitted.

We now proceed with a proof of the theorem for the case n ≥ 3, and omit
the case n = 2. It is analogous, but easier, except that for n = 2 the lineal-
ity space of σ is spanned by S,L1, L2, and the ray generators of σ/〈S,L1, L2〉
are the vectors [Rij ], so we need to replace σ with σ/〈S,L1, L2〉, and σ∨ with

σ∨ ∩ 〈S,L1, L2〉⊥.

In the case n = 3, σ is a pointed cone, and we may apply Theorem 2.6.
Let F ⊆ σ∨ be a positive-dimensional face. An integral element of F [1] is an
intregral solution (q0, qij) ∈ R1+k1+···+kn to all affine-linear equations

• qij = 1, if F ⊆ (Rij)
⊥,

• q0 −
∑ki
j=1 q

i
j = 1, if F ⊆ L⊥i ,

•
∑n
i=1

∑ki
j=1 q

i
j − 2q0 = 1, if F ⊆ S⊥.

As can be seen by direct computation, such a solution always exists if F ⊆ S⊥

does not hold, or if only for one ray generator Li it holds F ⊆ Li. Furthermore,
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F is of dimension zero if F ⊆ S⊥, and in addition there are at least three
inclusions of the form F ⊆ Li.

Let from now on F ⊆ S⊥ and let l and m be the only two distinct indices
such that Ll and Lm satisfy F ⊆ Ll, F ⊆ Lm. We now investigate when F [1]
does not contain an integral element. Observe that for each vector Rij with

i 6= l,m it holds F ⊆ (Rij)
⊥. If every such vector is a ray generator, by adding

the three three equations

q0 −
kl∑
j=1

qlj = 1, q0 −
km∑
j=1

qmj = 1,

n∑
i=1

ki∑
j=1

qij − 2q0 = 1,

we obtain

3 =
∑
i 6=l,m

ki∑
j=1

qij =
∑
i6=l,m

ki. (2)

Consequently, F [1] does not contain an integral element if equation (2) fails. In
the case n = 3 this is only true if ki 6= 1 holds for every i 6= l,m, since our
argument uses that all Rij , i 6= l,m be ray generators.

If on the other hand equation (2) holds, the choice q0 = kl + km and qij = 1

for all i and j except ql1 = km, q
m
1 = kl defines an integral element of F [1].

The maximal faces F contained in S⊥ ∩ L⊥l ∩ L⊥m are of the form F =
C ∩ L⊥l ∩ L⊥m ∩ S⊥, a cone over the product of simplices F ∩ Q = ∆kl ×∆km ,
and of dimension kl + km + 1. This proves the desired statement.

References

[CHT06] Aldo Conca, Serkan Hosten, and Rekha R. Thomas. Nice initial
complexes of some classical ideals. American Mathematical Society,
423:11–42, 2006.

[CLS11] D.A. Cox, J.B. Little, and H.K. Schenck. Toric varieties. Graduate
studies in mathematics. American Mathematical Society, 2011.

[DCEP82] Corrado De Concini, David Eisenbud, and Claudio Procesi. Hodge
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