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Abstract

Systems of polynomial equations appear both in mathematics, as well as in many applications in
the sciences, economics and engineering. Solving these systems is at the heart of computational
algebraic geometry, a field which is often associated with symbolic computations based on Gröbner
bases. Over the last thirty years, increasing performance and versatility made numerical algebraic
geometry emerge as an alternative. It enables us to solve problems which are infeasible with sym-
bolic methods. The focus of this thesis is the rich interplay between algebraic geometry, numerical
computation and optimization in various instances.

As a first application of algebraic geometry, we investigate global optimization problems whose
objective function and constraints are all described by multivariate polynomials. One of the most
important, and also most common, features of real world data is sparsity. We explore the effects of
sparsity in global optimization, when exhibited by constraints and objective functions. Exploiting
this property can lead to dramatic improvements of computational performance of algorithms.

As a second application of geometry we study a particularly structured class of polynomial
programs which stems from the optimization of sequencial decision rules. In the framework of
partially observable Markov decision rules, an agent manipulates a system in a sequence of events.
It selects an action at every time step, which in turn influences the state of the system at the next
time step, and depending on the state it receives an instantaneous reward. Optimizing the long
term reward has a long-standing history in computer science, economics and statistics. The ability
to incorporate nondeterministic effects makes the framework particularly well suited for real world
applications. We initiate a novel, geometric perspective on the underlying optimization problem
and explore algorithmic consequences.

As a third application of geometry we present the usage of tropical geometry in order to nu-
merically compute defining equations of unirational varieties from their parametrization. Tropical
geometry is an emerging field in mathematics at the boundary of discrete geometry and algebraic
geometry. The tropicalization of a variety is a polyhedral complex which encodes geometric infor-
mation of the variety. Tropical implicitization means computing the tropicalization of a unirational
variety from its parametrization. In the case of a hypersurface, this amounts to finding the Newton
polytope of the implicit equation, without computing its coefficients. We use this as a preprocessing
step for numerical computation.

Contrary to the above uses of geometry in application, we also employ numerical computation in
pure mathematics. When relying on numerical methods, problems can be solved that are infeasible
with symbolic methods, but the computational results lack a certificate for correctness. This
often hinders the application of numerical computation with the purpose of proving mathematical
theorems. With this in mind, we develop interval arithmetic as a practical tool for certification in
numerical algebraic geometry.
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Chapter 1

Introduction

Polynomial programs are optimization problems in which polynomial objective functions are min-
imized subject to polynomial constraints:

min
x∈Rn

f0(x) subject to f1(x) = · · · = fm(x) = 0. (POP)

The problem (POP) is also called a polynomial optimization problem. Such problems have broad
modelling power, and have found applications in various science and engineering problems, such
as signal processing, material sciences, combinatorial optimization, power systems engineering and
more [TR01, PRW95, MH19]. Much work in the past 20 years was targeted at studying convex
relaxations of (POP), based on the Lasserre Hierarchy and semidefinite optimization. A related line
of work has been to study the critical points of (POP). Inspired by recent increases in performance
of numerical polynomial system solving, in this work we focus on solving critical point equations.
The core of this thesis is the interplay between algebraic geometry and numerical computation, and
the study of the geometry of polynomial programs.

The field of computational algebraic geometry has traditionally been associated with symbolic
computations based on Gröbner bases. Over the last thirty years the novel computational paradigm
of numerical algebraic geometry emerged as an alternative, incorporating techniques from numerical
analysis. Based on algorithmic frameworks such as homotopy continuation it solves problems that
are infeasible with symbolic methods. While symbolic algorithms reveal the algebraic properties
of polynomial systems, numerical methods are predominantly geometric in nature, and compute
numerical approximations of solutions.

We now describe in broad strokes a framework that combines intersection theory and numerical
computation to solve various polynomial programs with a certificate for correctness. The emerging
questions will tie together, and motivate, many of the results in the following chapters. They further
touch on fundamental relations between algebraic geometry and numerical computation which are
of independent interest. The idea is to use Lagrange multipliers and numerical algebraic geometry
to find all critical points of, and therefore globally solve, the problem (POP). We consider the
Lagrange system LF = (f1, . . . , fm, `1, . . . , `n) of (POP), where

`j =
∂

∂xj

(
f0 −

m∑
i=1

λifi

)
.

In order to find an optimizer of (POP) we need to certifiably find all solutions of LF , since missing
any would render our results useless for the purpose of global optimization. Hence, we need to
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address fundamental problems of numerical computation. When employing numerical algorithms
to generate solutions, we have no guarantees a priori that we did not miss any solutions, or even
that our numerical approximations are correct and distinct. It is desirable to know how many
solutions there are to find:

Question 1. How many smooth critical points does (POP) have?

Intersection theory furnishes tools for assessing the algebraic complexity of (POP). In some
instances, we can either compute the exact number, or tight upper bounds for the number of
solutions to LF . Provided we know the answer to Question 1, we are left with the following
question, which also makes sense for arbitrary square polynomial systems LF .

Question 2. How to numerically certify that all numerically approximated solutions of LF repre-
sent true and distinct solutions?

Question 2 is contrary to the belief by some algebraists that numerical algorithms can only
provide the floating point approximation of a solution, but they cannot in general certify that such
a solution is unique, or provide guarantees. We emphasize that, using certification procedures,
numerical computation can be used to prove lower bounds to the number of solutions by addressing
Question 2. Further, should the number of certified solutions agree with the total number of critical
points, then we have a proof that all critical points were found. In that sense, addressing both
questions above lets us solve (POP).

The algorithmic framework of Homotopy Continuation can be used for finding all solutions
of LF by tracking solutions from an ‘easy’ system of polynomial equations G(x) (called the start
system) to LF . This is done by constructing a homotopy,

H(t;x) : [0, 1]× Cn −→ Cn,

with H(0;x) = G(x) and H(1;x) = LF (x). We call a homotopy H sufficient if, by solving the
ODE initial value problems ∂H

∂t + ∂H
∂x ẋ = 0 with initial values {x : G(x) = 0}, all isolated solutions

of F (x) = 0 can be obtained. A practical question when employing this method is:

Question 3. How to efficiently compute a sufficient homotopy for LF , such that the start system
G has a minimal number of solutions?

We now describe the contents of this thesis in more detail. At the beginning of each chapter
we summarize our main results and give an overview of the state of the art. Each chapter contains
concrete examples. Many of the results in this thesis coming from algebraic geometry are accom-
panied by software that provides concrete algorithmic solutions. Most code is made accessible at
MathRepo: https://mathrepo.mis.mpg.de/#.

Chapter 2 In Chapter 2 we study a broad class of polynomial optimization problems whose
constraints and objective functions exhibit sparsity patterns. Based on toric intersection theory
we give two formulas for the number of critical points of generic members, one as a mixed volume
and one as an intersection product based on Porteus’ formula. This addresses Question 1. As
a corollary, under the same sparsity assumptions, we obtain a convex geometric interpretation of
polar degrees, a classical invariant of algebraic varieties, as well as Euclidean distance degrees.
Furthermore, we prove BKK generality of Lagrange systems LF in many instances.

Finally, we demonstrate how Question 3 can be addressed, based on our previous results from
this chapter. In the case where we have a linear objective and a single polynomial constraint
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we explicitly construct a polyhedral homotopy algorithm for solving the Lagrange system LF . A
bottleneck in computing a start system for the Lagrange system LF is solving the tropicalization
of LF . Our algorithm relies on an explicit description of the tropical solution set of LF . The
superiority over traditional homotopy continuation algorithms is demonstrated experimentally.

Chapter 3 Hauenstein and Sottile remark in [HS12] that while numerical methods “routinely
and reliably solve systems of polynomial equations with dozens of variables having thousands of
solutions”, they have the shortcoming that “the output is not certified” and that “this restricts
their use in some applications, including those in pure mathematics”. In Chapter 3 we combine
interval arithmetic and Krawczyk’s method with numerical algebraic geometry to rigorously certify
solutions to square systems of polynomial equations. We present an extremely fast and easy-to-
use implementation of a certification method in HomotopyContinuation.jl. This implementation
makes the certification of solutions often a matter of seconds and not hours or days. The function
certify takes as input a square polynomial system F , an approximation of a complex zero x ∈ Cn
and returns a small box around x, provably containing a unique solution of F = 0. Our method
can be used to prove hard lower bounds on the number of (real/positive) zeros of a polynomial
system. This method effectively addresses Question 2. Within the last two years it has paved the
way for applications of numerical methods in various instances [BRST23, BFS21, KPR+21, BPS21,
BHIM22, Ear21, Mar21, Wei21, LAR21, Stu21, BT21, ABF+23, BKK20, SY21, ST21].

Chapter 4 So far, in Chapter 2 the only structure that we leveraged in the study of polynomial
programs is sparsity. In Chapter 4 we construct a particular family of highly structured polyno-
mial programs that are motivated by application. Partially observable Markov decision processes
(POMDPs) offer a model for sequential decision-making under state uncertainty and model vari-
ous real-world sequencial decision processes that are based on partial information. Such processes
include the optimal control of robots, machine maintenance, search problems, and inventory prob-
lems [Whi88, Bel66]. Difficulties that appear in from real world applications, such as noisy sensing
and imperfect control, are naturally incorporated in the framework of POMDPs. The optimization
of the expected long-term reward is known to be NP-hard in general [VLB12].

In this chapter we open up a new, exciting geometric perspective on the optimization of
POMDPs in the case of deterministic observations. By solving an implicitization problem for
the reward function, we recast this problem as a polynomial program with a linear objective func-
tion. The feasible set of this problem is the positive part of the state-aggregation variety, a linear
section of a join of Segre varieties. We conduct experiments in which we solve the KKT equations
or the Lagrange equations over different boundary components of the feasible set. In Section 4.8
we give a satisfactory answer to Question 1 in this setting, by computing the polar degrees of state
aggregation varieties. This is a considerable improvement over the bounds from Chapter 2, which
apply more generally. Our results open up many interesting questions. This includes, for exam-
ple, showing objective value exactness of the first order Lasserre relaxation of the quadratically
constrained optimization problem.

Chapter 5 In the previous chapters we investigated families of polynomial equations with a focus
on understanding the behaviour of general members. This chapter investigates the discriminant
locus that comprises the members that are not general. More precisely, we investigate implicitiza-
tion problems from a tropical view point and provide a software package based on Oscar.jl that
predicts Newton polytopes of implicit equations. It solves challenging instances, and can be used
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for classical implicitization as well. In particular, it computes A-discriminants. We also develop
implicitization in higher codimension via Chow forms, and we pose several open questions.
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Chapter 2

The algebraic degree of sparse
polynomial optimization

One of the most important and also most common features of real world data is sparsity. Ex-
ploiting this property can lead to dramatic improvements of computational performance, affecting
both execution time and memory usage of algorithms. Due to its ubiquity, it is very desirable to
leverage sparsity in general purpose methods. In this chapter we study a broad class of polyno-
mial optimization problems whose constraints and objective functions exhibit sparsity patterns.
We give two characterizations of the number of critical points of these problems, one as a mixed
volume and one as an intersection product on a toric variety. As a corollary, we obtain a con-
vex geometric interpretation of polar degrees, a classical invariant of algebraic varieties, as well as
Euclidean distance degrees. Furthermore, we prove BKK generality of Lagrange systems in many
instances. Finally, we demonstrate how our theoretical results can be made effective by developing
a polyhedral homotopy algorithm for solving Lagrange systems in restricted cases.

2.1 Introduction

We again consider the polynomial optimization (POP) from the introduction of this Thesis:

min
x∈Rn

f0(x) subject to f1(x) = 0, . . . , fm(x) = 0

When the first order optimality conditions hold, there are finitely many complex critical points
to (POP). For a specified objective function f0 and for fixed constraints f1, . . . , fm we abbreviate
F = (f0, . . . , fm). The number of complex critical points of F is called the algebraic degree of F.
While (POP) is a real optimization problem, one considers the number of complex critical points
since for polynomials F with fixed monomial support, the algebraic degree is generically1 constant.

When the first order optimality conditions of (POP) hold, then the coordinates of the optimal
solution of (POP) are algebraic functions of the coefficients of F. The algebraic degree of F has an
additional interpretation as the degree of these algebraic functions. Observe also that the algebraic
degree gives an upper bound on the number of real critical points of (POP). This gives a bound
on the number of local optima, where local optimization methods can get caught.

A formula for the algebraic degree when F consists of generic polynomials with full monomial
support was given in [NR09]. This was then specialized for many classes of convex polynomial

1By generic, we mean generic with respect to the Zariski topology. See Remark 2.2.1 for a detailed explanation.
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optimization problems in [GvBR09] and [NRS10]. When the objective function is the Euclidean
distance function, i.e. f0 = ‖x− u‖22 for a point u ∈ Rn, the number of critical points to (POP) for
general u is called the ED degree of (f1, . . . , fm). The study of ED degrees began with [DHO+14]
and initial bounds on the ED degree of a variety were given in [DHO+16]. Other work has found the
ED degree for real algebraic groups [BD15], Fermat hypersurfaces [Lee17], orthogonally invariant
matrices [DLOT17], smooth complex projective varieties [AH18], the multiview variety [MRW20a],
when m = 1 [BSW21] and when the data u and polynomials f1, . . . , fm are not general [MRW20b].

A related problem is maximum likelihood estimation which considers the objective function
f0 = xu11 · · ·xunn . The number of complex critical points is called the ML degree of (f1, . . . , fm).
Relationships between ML degrees and Euler characteristics as well as the ML degree of various
statistical models have been studied in [CHKS06, HKS05, Huh13, ABB+19, DM21, MMW21].

Inspired by recent results on the ED and ML degrees of sparse polynomial systems [BSW21,
LNRW23], we study the algebraic degree of (POP) when each fi ∈ R[x1, . . . , xn] is assumed to
be a sparse polynomial (see Section 2.2.1 below), with generic coefficients. Given an optimization
problem of the form (POP) where F is a general list of sparse polynomial equations, define the
Lagrangian of F to be

ΦF (λ, x) := f0 −
m∑
i=1

λifi.

We consider the Lagrange system of F, namely LF = (f1, . . . , fm, `1, . . . , `n), where

`j =
∂

∂xj

(
f0 −

m∑
i=1

λifi

)
.

Analogous to the algebraic degree of polynomial optimization from [NR09], we generalize the
common term to the algebraic degree of sparse polynomial optimization. It is the number of critical
points:

#V (LF) = # {(x, λ) ∈ Cn × Cm : 0 = f1 = · · · = fm = `1 = · · · = `n} (2.1)

of f0 restricted to V(f1, . . . , fm) where each fi ∈ R[x1, . . . , xn] is a sparse polynomial.
There exist classical results in algebraic geometry bounding the number of isolated solutions to

a square polynomial system. A result of Bézout says that #V(LF) is bounded above by the product
of the degrees of the polynomials in LF. If deg(fi) = di and deg(`j) = hj , 0 ≤ i ≤ m, 1 ≤ j ≤ n,
Bézout ’s bound reduces to d1 · · · dm · h1 · · ·hn where hj ≤ maxi∈[m]{d0 − 1, di}. The work of Nie
and Ranestad refined this bound considerably and showed that

#V(LF) ≤ d1 · · · dm ·Dn−m(d0 − 1, . . . , dm − 1)

where Dr(n1, . . . , nk) =
∑

i1+···+ik=r n
i1
1 · · ·n

ik
k is the symmetric sum of products [NR09]. While

this bound is generically tight for dense polynomial systems, the following example shows that it
can be quite bad (even worse than Bézout’s bound) for sparse polynomial systems.

Example 2.1.1. Consider the following optimization problem:

min
x∈Rn

cTx subject to f = α1x
3
1 +

n−1∑
j=2

αjx
2
j + αnxn = 1. (2.2)

where c, α ∈ Rn are generic parameters. The corresponding Lagrange system is given by LF =
(`1, . . . , `n, f) where

`1 = c1 − 3λα1x
2
1, , `n = cn − αnλ, `j = cj − 2λαjxj , 2 ≤ j ≤ n− 1.
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The Bézout bound tells us that #V(LF)) ≤ 3 · 2n−2 which is better than the Nie-Ranestad bound
which gives #V(LF)) ≤ 3 ·Dn−1(0, 2) = 3 ·2n−1. In this case, the sparsity of the Lagrange equations
allows one to solve the system by hand one variable at a time. One can see that for generic values
of c and α, the number of critical points equals #V(LF) = 2.

Motivated by the previous example we proceed to prove stronger bounds for the algebraic degree
of sparse polynomial optimization programs in this chapter. We focus on a version of Question 1
from the Introduction of the Thesis: How many critical points does (POP) have for sparse F? The
motivation for Question 1 is that if we know how many critical points (POP) has, and we find them
all, then we can globally solve (POP). Currently, the only way to provably find all smooth critical
points is to find all complex solutions of LF.

The field of computational algebraic geometry has traditionally been associated with symbolic
computations based on Gröbner bases. Recent developments in numerical frameworks, such as
homotopy continuation [BHSW], provide algorithms that are able to solve problems intractable
with symbolic methods. Moreover, numerical algorithms can not only provide the floating point
approximation of a solution, but also certify that a given approximation represents a unique so-
lution, and provide guarantees [BRT23, Rum99, Lee19], as we will see in Chapter 3. Therefore,
numerical computation can be used to prove lower bounds to the number of solutions. However,
to guarantee that there are no other solutions, one needs an upper bound to #V(LF), which can
be obtained using intersection theory.

Such an intersection theoretic bound for sparse polynomial systems was given by the celebrated
Bernstein-Kouchnirenko-Khovanskii (BKK) theorem. The BKK theorem relates the number of
C∗ zeros to a system of polynomial equations to the mixed volume of the corresponding Newton
polytopes (see Section 2.2.1). While their bound is generically tight, we note that the coefficients
of the system LF are linearly dependent, so a priori it is not clear that the system LF has the
expected number of solutions. This inspires the following question:

Question 4. Does the number of solutions of the Lagrange system of (POP) agree with the BKK
bound?

An affirmative answer to Question 4 would show that polyhedral homotopy algorithms are opti-
mal for finding all complex critical points to (POP) in the sense that for every solution to LF = 0,
exactly one homotopy path is tracked. For more details on polyhedral homotopy continuation
see [HS95a]. Furthermore, understanding BKK exactess of non generic polynomial systems is of
increasing interest in the applied algebraic geometry community.

Contribution

In this chapter we contribute several results based on intersection theory that determine the number
of critical points of generic, sparse polynomial programs. First, we show in Theorem 2.3.7 that the
answer to Question 4 is positive for a wide class of sparse polynomial programs having strongly
admissible monomial support (see Definition 2.3.4). In particular, our results show that the bound
is tight for Example 2.1.1.

As a corollary, we generalize the result in [BSW21] in this case and show that the ED degree
of a variety with strongly admissible support is equal to the BKK bound of its corresponding La-
grange system (Corollary 2.4.1). We also prove analogous results for (the sum of) polar degrees
(Corollary 2.4.5), giving the first convex geometric interpretation of the algebraic invariant. Fur-
ther, in Corollary 2.3.8 we show that algebraic degrees of generic sparse polynomial programs are
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determined by the Newton polytopes of F. Corollary 2.3.8 has also algorithmic implications which
were studied in [RMR23].

For a larger family of sparse polynomial programs, in Theorem 2.3.11 we provide a different
formula for the corresponding algebraic degrees. Our main tool here is Porteous’ formula, which
computes the fundamental class of the degeneracy locus of a morphism between two vector bundles
as a polynomial in their Chern classes. Using Porteous’ formula, Theorem 2.3.11 expresses the
algebraic degree in terms of the intersection theory of a certain toric compactification of (C∗)n.
The formula for the algebraic degree in Theorem 2.3.11 can be expressed as a (non-necessarily
positive) linear combination of mixed volumes. However, the explicit connection to the mixed
volume of the Lagrange system is still mysterious.

Finally, in Section 2.7 we demonstrate how Question 3 from the Introduction of the thesis can
be solved effectively, based on our previous results. In the case where we have a linear objective
function and a single constraint we explicitly construct a specialized polyhedral homotopy algorithm
for solving the Lagrange system. This is the content of Theorem 2.7.4. We further present numerical
results which show that our algorithm outperforms standard polyhedral homotopy solvers.

2.2 Preliminaries and notation

2.2.1 Sparse polynomials and polyhedral geometry

A sparse polynomial f ∈ C[x1, . . . , xn] is defined by its monomial support and its coefficients.
Specifically, for a finite subset A ⊂ Nn = Zn≥0, we write

f =
∑
α∈A

cαx
α

where xα := xα1
1 · · ·xαnn and cα ∈ C. For a sparse polynomial f , we associate to it a polytope called

the Newton polytope of f which is defined as the convex hull of its exponent vectors. It is denoted
Newt(f) = Conv{α : α ∈ A}. A sparse polynomial system F = (f0, . . . , fm) is then defined by a
tuple A = (A0, . . . ,Am) where fi =

∑
α∈Ai cα,ix

α ∈ C[x1, . . . , xn].

Remark 2.2.1. In this chapter we consider generic sparse polynomial systems. A statement holds
for a generic sparse polynomial system if it holds for all systems F where for each i = 0, . . . ,m the
coefficients {cα,i}α∈Ai of fi lie in some nonempty Zariski open subset of the space CA0 × · · ·×CAm
of coefficients. This means that the non-generic behavior occurs on a set of measure zero in the
space CA0 × · · · × CAm .

Given polytopes P1, . . . , Pn ⊂ Rn, the mixed volume of P1, . . . , Pn is the coefficient in front of
the monomial λ1 · · ·λn of the polynomial

Voln(λ1P1 + . . .+ λnPn)

where P+Q = {p+q : p ∈ P, q ∈ Q} is the Minkowski sum and Voln is the standard n-dimensional
Euclidean volume.

In a series of celebrated results [Ber75, Kou76, Kho78] the connection between the number of
solutions over C∗ := C\{0} to a system of sparse polynomial equations and the underlying convex
geometry of the polynomials was made.
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Theorem 2.2.2 (BKK Bound [Ber75, Kou76, Kho78]). Let F = (f1, . . . , fn) ⊂ C[x1, . . . , xn] be a
sparse polynomial system with η solutions in (C∗)n, counted with multiplicity, and let Pi = Newt(fi).
Then

η ≤ MVol(P1, . . . , Pn).

Moreover, if the coefficients of F are general then η = MVol(P1, . . . , Pn).

If for a sparse polynomial system F the BKK bound holds with equality, we say F is BKK
general. Bernstein gave explicit degeneracy conditions under which the above inequality is tight by
considering the initial systems of F [Ber75].

Given a polytope P ⊆ Rn and a vector w ∈ Zn\{0}, let Pw denote the face exposed by w.
Specifically,

Pw = {v ∈ P : 〈v, w〉 ≤ 〈y, w〉 ∀y ∈ P}.
For a sparse polynomial f we call

initw(f) =
∑

α∈(Newt(f))w

cαx
α

the initial polynomial of f with respect to w. For a sparse polynomial system F, we denote
initw(F) = (initw(f1), . . . , initw(fn)).

Theorem 2.2.3 ( Theorem 2, [Ber75] ). Let F = (f1, . . . , fn) ⊂ C[x1, . . . , xn] be a sparse polynomial
system with η isolated C∗ solutions counted with multiplicity and let Pi = Newt(fi). All C∗ solutions
of F (x) = 0 are isolated and η = MVol(P1, . . . , Pn) if and only if for every w ∈ Zn\{0}, initw(F)
has no C∗ solutions.

Theorem 2.2.2 and Theorem 2.2.3 demonstrate the intimate connection between solutions to
systems of polynomial equations and polyhedral geometry. In the remainder of this section we
define a few more objects that are helpful when using this connection.

Given A = (A0, . . . ,Am) ∈ Nn we define the Cayley polytope of A as

Cay(A) = Conv ({(x, ei) : x ∈ Ai, i = 0, . . . ,m}) ⊂ Rn+m

where ei is the ith standard basis vector of Rm and e0 is the vector of all zeroes. Similarly, for a
sparse polynomial system F, with support A = (A0, . . . ,Am) we define Cay(F) = Cay(A).

For a face of a convex polytope, F ⊂ P ⊂ Rn, the normal cone of F is the set of linear
functionals which achieve their minimum on F , i.e.

σ(F ) = {c ∈ Rn : 〈c, x〉 ≤ 〈c, y〉, ∀x ∈ F, y ∈ P}.

The normal cones of each face of P form a fan, denoted σ(P ) ⊂ Rn.
Finally, throughout the rest of this chapter we will consider the operation of taking the “partial

derivative” of a polytope which we define as follows. Let P ⊂ Rn≥0 be a polytope contained in the
positive orthant. Then

∂jP = (P − ej) ∩ Rn≥0 = {α− ej : α ∈ P, αj ≥ 1},

where ej is the j−th standard basis vector of Rn.
Of course, the definition of ∂jP is motivated by the partial differentiation operation of a poly-

nomial f ∈ R[x1, . . . , xn] with Newt(f) = P . Indeed, one always has Newt( ∂
∂xj

f) ⊂ ∂jNewt(f).

However, the inclusion Newt( ∂
∂xj

f) ⊆ ∂jNewt(f) can be strict. In general, even if P is integral, the

polytope ∂iP does not have to be integral:
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Example 2.2.4. Let f be the bivariate polynomial

f = 1 + x+ y + xy + x2 + x2y + x2y2.

The three polytopes Newt(f), ∂1Newt(f) and Newt( ∂
∂xf) are displayed below.

For a polynomial f =
∑

α∈A cαx
α having full monomial support (i.e. cα 6= 0 for any α ∈

Newt(f) ∩ Nn) the two constructions are connected in the following way:

Newt

(
∂

∂xj
f

)
= Conv{∂jNewt(f) ∩ Nn}.

In particular, if f is a degree d polynomial with all monomials of degree ≤ d having non-zero
coefficients, then

Newt

(
∂

∂xj
f

)
= ∂jNewt(f).

2.2.2 Toric varieties

Theorem 2.2.2 can be seen as an intersection theory question on toric varieties. A toric variety X
is an irreducible variety such that (C∗)n is a Zariski open subset of X and the action of (C∗)n on
itself extends to an action of (C∗)n on X. We can also associate normal toric varieties to polyhedral
fans.

Let σ ∈ Rn be a rational polyhedral cone which does not contain any vector subspace and
denote

Sσ = σ∨ ∩ Zn

where σ∨ = {y ∈ Rn : 〈y, x〉 ≥ 0 ∀x ∈ σ} is the dual cone of σ. Then the affine toric variety
associated to σ is

Vσ = Spec(C[Sσ])

where C[Sσ] is the semigroup algebra associated to Sσ.

Given a polyhedral fan Σ we have a collection of affine toric varieties indexed by cones in Σ,
denoted {Vσ : σ ∈ Σ}. This collection of toric varieties can be ‘glued’ together to create the toric
variety XΣ as follows. Given σ, τ ∈ Σ, then ρ = σ ∩ τ ∈ Σ is a face of both σ and τ . This induces
the inclusion Vρ ⊂ Vσ and Vρ ⊂ Vτ . We then glue Vσ and Vτ by identifying of the common open
subset Vρ. For a more complete treatment of toric varieties, see [CLS11].

In this chapter we will work with the total coordinate ring or Cox ring of a toric variety which
is a generalization of homogeneous coordinate ring of projective space introduced in [Cox95]. First,
let us denote by Σ(1) the set of all rays of Σ, where by abuse of notation we often do not distinguish
between rays ρ and their primitive ray generators. The Cox ring of XΣ is

S = C[xρ : ρ ∈ Σ(1)].

16



To every ray ρ we associate the corresponding torus invariant Weyl divisor Dρ. Note that every
torus invariant Weyl divisor D on X is a free linear combination D =

∑
ρ∈Σ(1) aρDρ. Then the

global sections of the associated sheaf OX(D) are spanned by monomials:

H0(OX(D), X) = 〈Xm | m ∈ Zn, 〈m, ρ〉 ≥ −aρ〉 .

Given a global section f =
∑

m∈Zn cmX
m of OX(D), we define the homogenization f̃ ∈ S of f :

f̃ =
∏

ρ∈Σ(1)

x
aρ
ρ f(z1, . . . , zn). (2.3)

Here the variables zi are defined by zi =
∏
xρiρ . Expanding equation (2.3) reads

f̃ =
∑
m∈Zn

cm
∏

ρ∈Σ(1)

x
〈m,ρ〉+aρ
ρ .

Note that a Laurent polynomial f ∈ C[X±1 , . . . , X
±
n ] can be a section of the sheaf OX(D) for a

certain choice of D, and the homogenization f̃ depends on the choice of D.

Example 2.2.5. Consider the toric variety P1×P1, associated to the dual fan Σ(P ) of the square
P . The four generators X0, X1, Y0, Y1 of the Cox ring S are in bijection to the four rays.

Homogenizing the bivariate polynomial f = 1 + x + y + xy yields the bihomogeneous polynomial
f̃ = X0Y0 +X1Y0 +X0Y1 +X1Y1.

2.2.3 Chern and Segre classes of vector bundles

The main ingredient of the intersection theoretic formulas for the algebraic degree of polynomial
optimization problems given in [NR09] is Porteous’ formula. Porteous’ formula computes the ex-
pected cohomology class of the degeneracy locus of maps of vector bundles. Loosely speaking,
vector bundles are families of vector spaces that are parameterized by another space and cohomol-
ogy classes are algebraic invariants of topological spaces. In this chapter all vector spaces will be
parameterized by algebraic varieties and the vector spaces will all have the same dimension, called
the rank of the vector bundle. To formulate Porteous formula one needs to use Chern and Segre
classes, which are well-studied characteristic classes of vector bundles. Here we list some main
properties of these classes. For more detailed introduction we refer to [EH16].

For a vector bundle E of rank r on a variety X of dimension d and for any i = 0, . . . , d, we
denote its ith Chern class by ci(E). One has c0(E) = 1 and ci(E) = 0 for any i > r. We will denote
by c(E) the total Chern class of E , that is

c(E) = c0(E) + · · ·+ cmax(d,r)(E).
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The crucial property of total Chern classes, known as Whitney’s formula, is that they are multi-
plicative under taking direct sums with line bundles:

c(E ⊕ F ) = c(E) · c(F).

In what follows we will mostly work with vector bundles coming as a direct sum of line bundles
E = L1 ⊕ . . .⊕Ln. By applying Whitney’s formula to such vector bundles we obtain a convenient
formula for their total Chern class:

c(E) =
n∏
i=1

(1 + c1(Li)). These are graded pieces: ck(E) =
∑

I∈([n]k )

∏
i∈I

c1(Li).

Finally, let us recall the definition of Segre classes. Note that, the total Chern class c(E) is an
invertible element in the cohomology ring of X as its 0-th degree part is equal to 1. Using this one
defines a total Segre class s(E) of a vector bundle E on X to be the inverse of the total Chern class
of E :

s(E) =
1

c(E)
.

Individual Segre classes si(E) are defined as homogeneous components of the total Segre class. Note
that unlike Chern classes, one could have non-trivial Segre class si(E) even for i > r.

2.3 Statement of the main result

In this section we give an overview of the main results of this chapter and defer the proofs of
Theorem 2.3.6 and Theorem 2.3.11 to Section 2.6. The results in this chapter will be proven
under certain assumptions on the monomial support of F, which we define in the following. While
extensive numerical experiments suggest that both Theorem 2.3.6 and Theorem 2.3.7 are true
without these assumptions, we demonstrate in Example 2.3.12 that Theorem 2.3.11 may fail if we
drop them.

Although a more detailed discussion of how the assumptions on the monomial support come
into play is given at the beginning of Section 2.6, we already say a few explanatory words. The
notion of an admissible point configuration guarantees that all considered toric varieties contain a
distinct copy of affine space Cn, which we use in the proof of Proposition 2.6.2 below. It guarantees
the non-vanishing of the gradient of f0 on the boundary of a toric compactification.

Definition 2.3.1. We call a point configuration A = (A0, . . . ,Am) ∈ Nn admissible if:

1. the positive orthant Rn≥0 is a cone in the normal fan of the polytope Conv(Ai) for each
i = 0, . . . ,m, and

2. Conv(Ai) meets every coordinate hyperplane of Rn for each i = 0, . . . ,m.

When passing to a toric compactification, for various technical reasons we need to ensure that
the constraints f1, . . . , fm define a variety with a smooth closure. This is guaranteed by the following
notion of an appropriate toric variety and used in the proof of Proposition 2.6.1 below.

Definition 2.3.2. Let X be a proper normal toric variety with underlying polyhedral fan Σ in
Rn and A = (A0, . . . ,Am) an admissible point configuration. We call X appropriate for A if the
following three properties hold:
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1. for each i = 0, . . . ,m the normal fan Σ(Conv(Ai)) is refined by Σ ,

2. the fan Σ contains the positive orthant Rn≥0 as a cone,

3. for generic functions fi with monomial support Ai, the closure of V(f1, . . . , fm) in X is disjoint
from the singular locus of X.

Remark 2.3.3. Note that for every admissible point configuration A there exists a smooth ap-
propriate toric variety X. To construct X consider the normal fan Σ′ of the Minkowski sum
Conv(A0) + · · · + Conv(Am). A resolution of singularities can be performed by subdividing each
singular cone of Σ′, resulting in a smooth, complete polyhedral fan Σ which contains the positive
orthant. For more details on toric resolution of singularities consider Chapter 11 of [CLS11].

In the proof of Theorem 2.3.6 and Theorem 2.3.11 we consider a natural choice for the toric
compactification X, given by the coarsest refinement of all normal fans of the newton polytopes
Newt(f0), . . . ,Newt(fm). It is desirable that this compactification is appropriate. This leads us to
the following definition:

Definition 2.3.4. We call a point configuration A = (A0, . . . ,Am) ∈ Nn strongly admissible if it
is admissible and if the variety

X = X(Σ(Conv(A0) + · · ·+ Conv(Am)))

is appropriate for A. Here X is the toric variety associated to the common refinement of the normal
fans Σ(Conv(Ai)).

We give examples for the above definitions.

Example 2.3.5. Let S ⊆ R3 denote the tetrahedron Conv(0, e1, e2, e3), let C denote the three-
dimensional cube Conv(0, e1, e2, e3, e1+e2, e1+e3, e2+e3, e1+e2+e3) and let B denote the bipyramid
Conv(0, e1, e2, e3, e1 + e2 + e3).

• The integer points of S and the points of −S + (1, 1, 1) do not form an admissible point
configuration since the normal fan of −S does not contain the positive orthant as a cone.

• The integer points of S and C form a strongly admissible point configuration. This is because
the singular locus of the toric variety defined by S + C is zero-dimensional.

• The tetrahedron S and the bipyramid B define an admissible, but not strongly admissible,
point configuration. In particular, the toric variety defined by S + B is not appropriate for
the considered point configuration. To see this consider the three-dimensional toric variety
defined by S + B. The torus orbit defined by the cone σ = R+(−1,−1, 1) + R+(−1,−1,−1),
dual to the face Conv((2, 1, 1), (1, 2, 1)) of S +B, is contained in the singular locus. Further,
said orbit intersects V , since the face Conv((1, 0, 0), (0, 1, 0)) of S revealed by σ is not a vertex.

The polytopes S+B and S+C are displayed below, with the faces that define singular torus orbits
coloured in green.
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The next two results express the number of solutions of LF as mixed volumes.

Theorem 2.3.6. Let F = (f0, . . . , fm) be a generic sparse system of polynomials in C[x1, . . . , xn]
with strongly admissible support. Then the algebraic degree of sparse polynomial optimization of
(POP) is equal to

MV (Newt(f1), . . . ,Newt(fm), ∂1Newt(ΦF ), . . . , ∂nNewt(ΦF )) . (2.4)

Here ΦF denotes the Lagrangian ΦF (λ, x) := f0−
∑m

i=1 λifi, as above. Note that the polytopes
∂jNewt(ΦF ) might be strictly larger than the Newton polytopes Newt(`j) of the partial differentials
`j = ∂

∂xj
(f0 −

∑m
i=1 λifi). While the Newton polytopes of `1, . . . , `n do depend on the exact

monomial support of f0, . . . , fm, the mixed volume (2.4) does only depend on the convex hulls of
A0, . . . ,Am. In particular, by Theorem 2.3.6, also the number of critical points only depends on
the Newton polytopes of f0, . . . , fm, and not their exact monomial support.

It is natural to ask whether the BKK bound of LF does depend on the exact monomial support
of f0, . . . , fm. The following theorem shows that, although we might have a strict inclusion of
polytopes Newt(`j) ⊆ ∂jNewt(ΦF ), the BKK bound of LF is equal to the mixed volume (2.4).

Theorem 2.3.7. Under the assumptions of Theorem 2.3.6 the Lagrange system LF is BKK general
and all critical points are smooth. The number of solutions is the mixed volume

MV (Newt(f1), . . . ,Newt(fm),Newt(`1), . . . ,Newt(`n)) . (2.5)

If F is not generic then (2.5) is an upper bound for the number of isolated, smooth critical points
of f0 restricted to V(f1, . . . , fm).

Proof. For every j = 1, . . . , n we have the inclusion Newt(`j) ⊆ ∂jNewt(ΦF ) of polytopes, showing
the inequality (2.5)≤(2.4). On the other hand, by Theorem 2.3.6, the BKK bound (2.5) of LF

constitutes an upper bound to (2.1) and we obtain

(2.1) ≤ (2.5) ≤ (2.4) = (2.1).

By Lemma 2.6.4, all critical points are smooth.

We obtain the following corollary from Theorem 2.3.6 and Theorem 2.3.7.

Corollary 2.3.8. Under the assumptions of Theorem 2.3.6 the algebraic degree of the sparse poly-
nomial optimization problem (POP) and the mixed volume (2.5) depend only on the convex hulls
of Newt(fi) for i = 0, . . . ,m.
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Remark 2.3.9. Corollary 2.3.8 has algorithmic consequences if one wishes to numerically find all
critical points to (POP) (as opposed to counting them). We leverage this at the end of this chapter
and efficiently compute polyhedral start systems for LF by imposing maximal sparsity.

Example 2.3.10. Recall the optimization problem (2.2) in Example 2.1.1. Theorem 2.3.7 shows
that the algebraic degree of this problem is equal to the mixed volume of its corresponding Lagrange
system. A property of mixed volumes is that if P1, . . . , Pn ⊂ Rn and Q1, . . . , Qm ⊂ Rn+m, then

MVol(P1, . . . , Pn, Q1, . . . , Qm) = MVol(P1, . . . , Pn) ·MVol(π(Q1), . . . , π(Qm)),

where π : Rn+m → Rm is the projection onto the last m coordinates. Observe that
Newt(`1), . . . ,Newt(`n) ⊂ Rn+1 have nth coordinate zero. Therefore,

MVol(Newt(`1), . . . ,Newt(`n),Newt(f)) = MVol(Newt(`1), . . . ,Newt(`n)) ·MVol(πn(Newt(f))

where πn : Rn+1 → R is the projection onto the nth coordinate.
Since Newt(`j) = Conv(0, αj) for j ∈ [n] and some αj ∈ Rn, we can compute

MVol(Newt(`1), . . . ,Newt(`n)) = det(M) where M is the matrix with jth column equal to αj .
In our case this amounts to computing

det




2 0 . . . 0
0 1 . . . 0

0 0
. . . 0

1 1 . . . 1


 = 2.

Finally, observe that πn(Newt(f)) = [0, 1] so it has (mixed) volume one. This gives a geo-
metric proof that the optimization degree of (2.2) is 2, agreeing with the result we computed in
Example 2.1.1.

Our next result, Theorem 2.3.11, characterizes the number of solutions to LF under slightly
weaker assumptions compared to Theorem 2.3.6 and Theorem 2.3.7, since the monomial support
A needs only be admissible instead of strongly admissible. We obtain a description not as a mixed
volume but as a more general product in the Chow ring of a toric variety.

To formulate Theorem 2.3.11, we first need some notation. We refer to Section 2.2 and references
therein for a brief introduction to the objects we use. Let A = (A0, . . . ,Am) be an admissible point
configuration (Definition 2.3.1) and let X be a smooth toric variety given by the fan Σ which is
appropriate for A (Definition 2.3.2). As usual, the convex hull of each point configuration Ai defines
a line bundle LAi .

Further, since we assume that the fan Σ contains the positive orthant as one of its cones, we
know that Σ containes the rays generated by the standard basis vectors e1, . . . , en of Rn. We denote
by De1 , . . . , Den the corresponding torus-invariant divisors on X and by OX(De1), . . . ,OX(Den) the
corresponding line bundles. For further reading on toric line bundles consider chapter 6 in [CLS11].

Theorem 2.3.11. Let F = (f0, . . . , fm) be a generic sparse system of polynomials in C[x1, . . . , xn]
with admissible support A and let X be as above. Then the algebraic degree of sparse polynomial
optimization (POP) is finite and equal to the degree of the following cycle class:

c1 (LA1) . . . c1 (LAn) (s(E) c(F))n−m , (2.6)

where E = L−1
A0
⊕ · · · ⊕ L−1

Am and F = OX(−De1)⊕ · · · ⊕ OX(−Den). Moreover, if F is not generic
then (2.6) is an upper bound to the number of isolated, smooth critical points of f0 restricted to
V(f1, . . . , fm).
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The purpose of the following example is to demonstrate that the assumptions for Theorem 2.3.11
are necessary.

Example 2.3.12. Consider the following objective f0 and constraint f1.

f0 = 7 + 11x− 13y − 19xy − 2x2 − 5y2

f1 = −5xy + 29xy2 − 17x2y + 61x2y2 + x2 − 3y2.

Newt(f0) : Newt(f1) :

Note that the inner normal fan of Newt(f1) does not contain the positive orthant R2
≥0. In fact,

evaluating equation (2.6) amounts to the number 12, while the actual number of isolated solutions
to LF in the torus are 10. In particular, Theorem 2.3.11 does not hold true. On the other hand, the
BKK bound of the corresponding Lagrange system equals 10, so Theorem 2.3.6 and Theorem 2.3.7
hold true. This discrepancy is not due to the specific choice of coefficients for f0 and f1. We note
that, although the assumptions on Theorem 2.3.6 and Theorem 2.3.7 are stronger than the ones on
Theorem 2.3.11, we believe that they hold in greater generality.

We give a rough sketch of how to evaluate (2.6). We denote the line bundles

c1 (LA1) = [2D2 + 4D3 + 2D4 − 2D6], and c1 (LA2) = [2D2 + 2D3 + 2D4],

and the vector bundles

E = L−1
A0
⊕ L−1

A1
and F = OX(D1)−1 ⊕OX(D5)−1.

Here, X is the smooth toric variety defined by the complete fan Σ with ray generators

ρ1 = (0, 1), ρ2 = (1, 1), ρ3 = (1, 0), ρ4 = (0,−1), ρ5 = (−1,−1), ρ6 = (−1, 0).

ρ1 ρ6

ρ5

ρ3 ρ4

ρ2

We have

c1(F) = [−D1 −D5] and s1(E) =
−1

c1(E)
= c1 (LA0) + c1 (LA1) = [4D2 + 6D3 + 4D4 − 2D6].

Finally, direct computation shows

c1 (LA1) · (s(E) c(F))1 = c1 (LA1) · (c1(F) + s1(E)) = 12.
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A short explanation is in order concerning the discrepancy between the number 10, of actual critical
points, and the number 12, coming from our cohomological computation. This difference comes
from an intersection at the toric boundary, which occurs even for a generic choice of coefficients for

f0 and f1. Consider the homogenization

(
∂̃f0
∂x ,

∂̃f0
∂y

)
of the gradient of f0 in the Cox ring. Each

entry of this gradient is divisible by the variable X6, associated to the ray ρ6. There are two points
on the toric divisor D6 = V(X6) where f̃1 vanishes. These make up for the difference. In conclusion,

although the affine equations
(
f1,

∂f0
∂x

∂f1
∂y −

∂f0
∂y

∂f1
∂x

)
generate the ideal for the set of critical points,

their homogenizations

(
f̃1,

∂̃f0
∂x

∂̃f1
∂y −

∂̃f0
∂y

∂̃f1
∂x

)
do not form generators of the homogenized ideal.

This example brings this section to and end, and we conclude with some implications to polar
and ED degrees in the next section.

2.4 Sparse ED, polar and sectional degrees

In this section, we discuss important corollaries of Theorem 2.3.6 and Theorem 2.3.7 which relate
Euclidean distance optimization, polar degrees and sectional degrees to mixed volumes.

We consider polynomial optimization problems where the objective function is f0 = ‖x − u‖22
for a generic point u ∈ Rn. Let (f1, . . . , fm) be a general sparse polynomial system, and u ∈ Rn
a general point. The ED degree of (f1, . . . , fm) is the number of complex critical points of the
optimization problem:

min
x∈Rn

‖x− u‖22 subject to f1(x) = . . . = fm(x) = 0. (ED)

Equivalently, it is the number of complex critical points to the corresponding Lagrange system of
F = (f0, f1, . . . , fm), namely LF = (`1, . . . , `n, f1, . . . , fm). This brings us to the main result of this
section, which relates ED degrees and mixed volumes.

Corollary 2.4.1 (Euclidean distance objective function). If f0 = ‖x−u‖22 is the squared Euclidean
distance function for a generic point u of Rn and (f1, . . . , fm) is a general sparse polynomial system
such that the support of F = (f0, . . . , fm) is strongly admissible, then the mixed volume and degree
of the Lagrange system LF are equal.

Proof. First, consider the weighted Euclidean distance function fC = ‖Cx − u‖22 where C is an
n × n diagonal matrix with general entries and call FC = (fC , f1, . . . , fm). Theorem 2.3.6 implies
that the degree and mixed volume of LFC are equal. We call this value η.

Observe that the variety of LFc is in bijection with the critical points of

min
x∈Rn

‖x− u‖22 subject to f1(C−1x) = . . . = fm(C−1x) = 0. (2.7)

This gives that there are η critical points to (2.7). Notice that the monomial support of
(f1(C−1(x)), . . . , fm(C−1(x)) is the same as that of (f1(x), . . . , fm(x)), since C is diagonal. There-
fore, the degree of LF is equal to its mixed volume.

In addition, we recall that in [DHO+14] a relationship between ED degrees and polar degrees
was established. Let X ⊂ Pn−1 be a projective variety and Y its dual. For a smooth point x ∈ X,
denote TxX as the tangent space of X at x. Denote the conormal variety of X as

NX = {(x, y) ∈ Pn × Pn : y ∈ Y \Ysing, x⊥TyX}.
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Theorem 2.4.2 ([DHO+14, Theorem 5.4]). If NX does not intersect the diagonal ∆(Pn−1), then

ED Degree(X) = δ0(X) + δ1(X) + . . .+ δn−1(X)

where δi(X) is the ith polar degree of X.

Remark 2.4.3. For a variety X ⊂ Pn, the ith polar degree δi(X) equals |NX ∩ (L1 × L2)| where
L1 is a generic linear space of dimension n + 1 − i and L2 is a generic linear space of dimension
i. The variety NX has dimension n − 1 so intersecting with the linear spaces L1, L2 amount to
intersecting it with a variety of dimension n+ 1. This ensures that the intersection NX ∩ (L1×L2)
is finite.

While the assumption of Theorem 2.4.2 that requires X to be an irreducible affine cone does
not typicallyhold in our situation, we remark that by considering a variety X ⊂ Cn defined by
polynomial equations with strongly admissible support, we can simply consider the projective clo-
sure of X, which we denote X. Under sufficient generality conditions, the projective closure of X
is defined by homogenizing the defining equations of X with respect to a new variable x0. While
the ED degree of X in general is not equal to that of X [DHO+16, Example 6.6], given that certain
varieties intersect transversally, they are equal. Let H∞ = Pn\Cn = V(x0) denote the hyperplane
at infinity. Denote X∞ = X ∩H∞ and Q∞ = {x2

0 + . . .+ x2
n = 0}.

Theorem 2.4.4 (Theorem 6.11 [DHO+16]). Let X ⊂ Cn be an irreducible, affine variety and
X ⊂ Pn its projective closure. Assume that the intersections X∞ = X ∩ H∞ and X∞ ∩ Q∞ are
both transversal. Then the ED degree of X is equal to the sum

∑n
i=0 δi(X), where δi(X) is the i-th

polar degree of X.

As a consequence of Corollary 2.4.1 and Theorem 2.4.4 we are able to establish a relationship
between polar degrees and mixed volumes. To our knowledge this is the first time a connection
between convex geometry and polar degrees has been made.

Corollary 2.4.5. Let X ⊂ Cn be an affine variety defined by polynomials (f1, . . . , fm) with strongly
admissible support and let X ⊂ Pn be its projective closure. Assume that the intersections X∞ =
X ∩ H∞ and X∞ ∩ Q∞ are both transversal. Let LF = (`1, . . . , `n, f1, . . . , fm) be the Lagrange
system of F = (f0, . . . , fm) corresponding to the Euclidean distance optimization problem (ED).
Then

MVol(Newt(`1), . . . ,Newt(`n),Newt(f1), . . . ,Newt(fm)) = δ0(X) + . . .+ δn−1(X)

where δi(X) is the ith polar degree of X.

Example 2.4.6. Consider the Euclidean distance optimization problem

min
x∈R2

∥∥∥∥[x1

x2

]
−
[
1
1

]∥∥∥∥2

2

subject to 4x2
1 + 2x2

2 − x1x2 = 1

The Lagrange system of this optimization problem is

LF = (2(x1 − 1)− λ(8x1 − x2), 2(x2 − 1)− λ(−x1 + 4x2), 4x2
1 + 2x2

2 − x1x2 − 1).
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The mixed volume of this system is four and there are indeed four complex solutions (x1, x2, λ),
two of which are real:

[0.3864, 0.5557,−0.4840],

[−0.3050,−0.6418, 1.4516],

[−0.1407− 1.6318i, 2.3431− 0.5950i, 0.2904− 0.1023i],

[−0.1407 + 1.6318i, 2.3431 + 0.5950i, 0.2904 + 0.1023i].

Figure 2.1: The ellipse 4x21 + 2x22− x1x2 = 1 along with the critical points (green) of the Euclidean distance problem
from the point (1, 1) (blue).

By Theorem 2.3.7 we know that the number of complex critical points to this opti-
mization problem will be MVol(P1, P2, P3) where P1 = Conv{(1, 0, 0), (1, 0, 1), (0, 1, 1)}, P2 =
Conv{(0, 1, 0), (1, 0, 1), (0, 1, 1)} and P3 = Conv{(2, 0, 0), (0, 2, 0), (1, 1, 0), (0, 0, 0)}.

Now we consider the projective closure of our variety which is defined by X = V(4x2
1 + 2x2

2 −
x1x2 − x2

0) ⊂ P2. The conormal variety of X, namely NX ⊂ P2 × (P2)∗, is defined as the zero set
of the following six polynomials:

− x2
0 + 4x2

1 − x1x2 + 2x2
2, x1y1 − 4x2y1 + 8x1y2 − x2y2, 31y2

0 − 8y2
1 − 4y1y2 − 16y2

2,

31x2y0 + 2x0y1 + 16x0y2, 31x1y0 + 8x0y1 + 2x0y2, x0y0 + 4x2y1 − 8x1y2 + 2x2y2.

The i- th polar degree δi(X) is given by the number of intersection points ofNX∩(L1×L2) where
L1 is a generic linear space of dimension n+1− i and L2 is a generic linear space of dimension i. In
this case we have δ0(X) = 2 and δ1(X) = 2 and we see that the ED degree of 4x2

1 + 2x2
2− x1x2− 1

equals the sum of the polar degrees of its projective closure as expected.

Finally, we conclude this section by making a final connection to sectional degrees as recently
studied in [MRWW23]. Given an affine variety X ⊂ Cn, the ith sectional degree of X, denoted
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si(X), is defined as the algebraic degree of the optimization problem

min
x∈Rn

〈u, x〉 subject to x ∈ X ∩H1 ∩H2 ∩ · · · ∩Hi (SO)

where u ∈ Rn is a generic linear function and H1, . . . ,Hi are generic affine linear hyperplanes. As
an immediate consequence of Theorem 2.3.7 we have a convex algebraic interpretation of si(X).

Corollary 2.4.7. Let X ⊂ Cn be an affine variety defined by generic polynomials (f1, . . . , fm)
with strongly admissible support. Let LF = (`1, . . . , `n, f1, . . . , fm) be the Lagrange system of F =
(〈u, x〉, f1, . . . , fm) corresponding to the sectional optimization problem (SO). Then

MVol(Newt(`1), . . . ,Newt(`n),Newt(f1), . . . ,Newt(fm)) = si(X)

where si(X) is the ith sectional degree of X.

Furthermore, by [MRWW23, Corollary 6.8] we have that if X ⊂ Cn is an affine variety with
projective closure X ⊂ Pn such that H∞ is not contained in the dual of X, then si(X) = δi(X) for
all 0 ≤ i ≤ dim(X). Given a polynomial system F = (f1, . . . , fm) we use the notation MVol(F) =
MVol(Newt(f1), . . . ,Newt(fm)).

Corollary 2.4.8. Let X ⊂ Cn be an affine variety defined by polynomials (f1, . . . , fm) with strongly
admissible support. For generic u ∈ Rn, let LF be the Lagrange system of F = (‖x−u‖22, f1 . . . , fm)
corresponding to the Euclidean distance optimization problem (ED) and LFi the Lagrange system
of Fi = (〈u, x〉, f1, . . . , fm) corresponding to the ith sectional optimization problem (SO). Assume
that H∞ is not contained in the dual variety of X. Then

MVol(LF) =

n−1∑
i=0

MVol(Li).

Observe that by the results in [MRWW23], we can think of sectional degrees as the affine
analogue of polar degrees. With this in mind and the aforementioned results, we have the following
conjecture.

Conjecture 2.4.9. Let X ⊆ Cn be an irreducible, affine variety and X ⊂ Pn its projective closure.
If X intersects Q∞ transversely then the ED degree of X is equal to s0(X) + . . .+ sn−1(X).

To provide one piece of evidence for Conjecture 2.4.9 we give an example where Conjecture 2.4.9
is true but Theorem 2.4.4 gives a strict upper bound on the ED degree.

Example 2.4.10. Consider the affine variety X = V(x2
1 − x2) ⊂ R2. We can directly compute the

ED degree of X to be three. In this case, X has two sectional degrees: s0(X) = 1 and s1(X) = 2.
It is then clear that Conjecture 2.4.9 holds in this case.

Conversely, we can consider the polar degrees of X = V(x2
1−x2x0). Here, the conormal variety

of X is defined as the common zero set of:

x2y2 − x0y0, y
2
1 − 4y2y0, x0y1 + 2x1y2,

x2y1 + 2x1y0, x1y1 + 2x0y0, x
2
1 − x2x0.

With this, one can directly compute that δ0(X) = 2 and δ1(X) = 2. This provides an example
where the sum of the polar degrees of X is a strict upper bound on the ED degree of X but the
sum of the sectional degrees is exact.
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2.5 Homogeneous equations for critical points

In this section we define homogeneous critical point equations for the optimization problem (POP).
We give two different sets of critical point equations for (POP). On the one hand, in [NR09] critical
points are characterized as an intersection of the vanishing locus of homogeneous equations {f̃1 =
· · · = f̃m = 0} with a projective determinantal variety W . We generalize this approach by replacing
projective space with an appropriate toric variety X. On the other hand we homogenise the
Lagrange equations LF = (f1, . . . , fm, `1, . . . , `n) in the Cox ring of a toric variety, P(E), which we
introduce now. We show both approaches define the desired critical point equations in Lemma 2.5.8
with (2.9) concerning the former approach and (2.10) the latter.

2.5.1 Toric projective bundles

We now describe the toric structure on the projectivization of a direct sum of line bundles on toric
varieties. Let X be a complete toric variety given by a fan Σ and let E = L0 ⊕ . . .⊕Lm be a fully
decomposible vector bundle on X. In this subsection we will describe the fan of the total space of
the projectivization P(E). We will start with a lemma:

Lemma 2.5.1. Let X be a toric variety and let E = L0 ⊕ . . . ⊕ Lm be a vector bundle which is
a direct sum of line bundles. The total spaces of E and P(E) have the structure of fibered toric
varieties. That is, the natural projection to X is a torus equivariant morphism.

Proof. For every line bundle Li, there exist torus invariant divisor Di such that Li = O(Di).
Therefore, each line bundle Li on X could be equipped with an equivariant structure, i.e. the
action of T on the total space of Li, which makes the projection map equivariant.

Now, fixing an equivariant structure on each of line bundles Li, we obtain a T -action on the
total space of E . Finally we extend the T -action on E to the action of T × (C∗)m+1 by making the
second component act fiberwise in a natural way. This action is faithful and has open-dense orbit
in the total space of E .

Moreover, the action of T × (C∗)m+1 on E descends to an action on P(E). The latter action has
a one-dimensional kernel given by the diagonal subtorus in (C∗)m+1. Hence P(E) has the structure
of a toric variety with respect to the factor torus

T ×
(
(C∗)m+1/C∗ · (1, . . . , 1)

)
.

Remark 2.5.2. Note that the divisor Di is defined up to addition of the principal divisor div(u)
of character u ∈ Zn or equivalently, any two equivariant structures on Li differ by the action of
the character of T . However, the toric variety structures defined by different choices of Di are
isomorphic (as toric varieties).

We conclude by describing the defining fan of the projectivized total space P(E), when the
defining line bundles of E are torus equivariant. More precisely, we denote for 0 ≤ j ≤ m by Dj a
torus invariant divisor such that Li = O(Di). Each divisor Dj defines a conewise-linear function

ψj : Rn = |Σ| → R.

Let Ψ = (ψ0, . . . , ψm) : |Σ| → Rm+1 be the corresponding piecewise linear map.
Let us denote by Σ̃ ⊂ Rn × Rm+1 a fan obtained as the graph of the function Ψ. That is, Σ̃

consists of cones σ̃ where
σ̃ = {(y,Ψ(y)) | y ∈ σ}, for σ ∈ Σ.

27



We now abuse notation and denote by Rn≥0 the fan whose cones are the boundary components
of the positive orthant in Rn. Then the fan defining the total space of E consists of cones

σ̃ + τ for σ ∈ Σ, τ ∈ Rn≥0 × {0}.

Similarly, the fan F defining the total space of E with the zero section removed is given by

σ̃ + τ for σ ∈ Σ, τ ∈ ∂Rn≥0 × {0},

where ∂Rn≥0 = Rn≥0 \{Rn>0} is the fan consisting of all cones in Rn≥0, except for the one of dimension
n. Finally, let S0 ⊂ E be the image of the zero section of E . Clearly S0 is a torus invariant subset
of E and thus the natural projection of E \ S0 → P(E) is a toric morphism. On the level of fans,
consider the projection

τ : Rn × Rm+1 −→ Rn ×
(
Rm+1/R · (1, . . . , 1)

) ∼= Rn × Rm.

The underlying fan of the projectivization P(E), is the image of F under τ .
Now let S be the Cox ring of X, and let SE be the Cox ring of P(E). By the above discussion,

each ray of Σ̃ is either of the form ρ̃, where ρ is a ray of Σ, or of the form {0}× ei, i = 1, . . . ,m+ 1.
This splits the generators of SE over C into two groups. The first group of generators xρ̃ is bijective
to the generators xρ of S. We denote members of the second group by λi = x{0}×ei+1

and obtain
the following proposition.

Proposition 2.5.3. The Cox ring SE is isomorphic to the free S-algebra S[λ0, . . . , λm].

Remark 2.5.4. In the following we are often in the situation that f is a global section of a torus
invariant line bundle OX(D) on X. Now f̃ denotes an element of S ⊆ SE . At the same time f can
be identified with a section of the bundle π∗OX(D) on P(E), where π : P(E) −→ X is the natural
projection. When homogenising, this gives rise to another element f̃ ∈ SE . Direct computation
shows that there is no need for disambiguation, since both expressions are equal.

2.5.2 Constructing critical point equations in Cox rings

We start by fixing some notation and definitions: For the rest of this section let F = (f0, . . . , fm) be
a generic sparse system of polynomials in C[X1, . . . , Xn] with admissible support A = (A0, . . . ,Am).
Furthermore X denotes a toric variety that is appropriate for A, with fan Σ.

Remark 2.5.5. Note that, since Σ contains the positive orthant Rn≥0 as a cone, there is a distinct
copy of the affine space Cn contained in X. For clarity, in this section, we denote the variables in
the coordinate ring C[X1, . . . , Xn] of Cn in capital letters, while the generators of the Cox ring S
of X are in lower case. By slight abuse of notation, we will denote the element xej in S by xj for
each j = 1 . . . , n.

For every i = 0, . . . ,m let Li = O(−Dfi) denote the dual line bundle associated to Dfi . Here
Dfi is the torus invariant Weyl divisor on X, corresponding to the Newton polytope Newt(fi):

Dfi =
∑

ρ∈Σ(1)

aρ,iDρ, where aρ,i = −min{〈m, ρ〉 : m ∈ Newt(fi)}. (2.8)

We denote by E the vector bundle E = L0 ⊕ · · · ⊕ Lm with projectivized total space

P(E) = {(x, [λ]) | x ∈ X, [λ] ∈ P (E(x))}.
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The rest of this section is devoted to giving two different, but related, systems of homogeneous
critical point equations for (POP), one in the Cox ring S of X, and one in the Cox ring SE of P(E).
On the one hand, critical points are characterized by the vanishing of the Lagrange system LF. It
describes the intersection of the incidence variety

Z◦ := {(x, [λ]) ∈ Cn × Pn : (∇f0 | · · · | ∇fm)λ = 0}

with the vanishing locus of f1, . . . , fm. On the other hand, critical points are characterized by
the Jacobian (∇f0 | · · · | ∇fm) dropping rank. They form the intersection V ◦ ∩W ◦, where V ◦ :=
V (f1, . . . , fm) ⊆ Cn, and W ◦ is the determinantal variety

W ◦ := {x ∈ Cn : rank (∇f0 | · · · | ∇fm) ≤ m}.

We proceed by giving homogeneous equations for V ◦,W ◦ and Z◦ in S and SE respectively.
Every polynomial fi is a global section of the line bundle OX(Dfi), and its homogeneous form can
be written as

f̃i =
∑

m∈Newt(fi)∩Zn
cm,i

∏
ρ∈Σ(1)

x
〈m,ρ〉+aρ,i
ρ .

Here we homogenize fi as in (2.3) in Section 2.2.2. In particular, f̃i is defined by our choice of line
bundle OX(Dfi).

We denote by V the closure of V ◦ = V (f1, . . . , fm) in X. Observe that by genericity of F, V is

equal to the vanishing locus of the homogeneous equations V = V
(
f̃1, . . . f̃m

)
.

From now on M denotes a homogeneous version of the Jacobian matrix:

M =
(
∇̃f̃0 | · · · | ∇̃f̃m

)
.

Here ∇̃ denotes the vector ( ∂
∂x1

, . . . , ∂
∂xn

)T . We use the notation ∇̃ instead of ∇ to indicate that we

differentiate with respect to coordinates in the Cox ring. So M has columns
(

∂
∂x1

f̃i, . . . ,
∂
∂xn

f̃i

)T
.

We define

W := {x ∈ X : rankM(x) ≤ m}

to be the vanishing locus of the maximal minors of M , and furthermore we let

Z := {(x, [λ]) ∈ P(E) : M(x)λ = 0}

be the associated incidence variety, contained in the projectivized total space P(E).

The rest of this Section is devoted to proving Lemma 2.5.8. It shows that the homogeneous
critical point equations agree with the affine ones when restricted to affine space Cn.

We need an observation about differentiating homogeneous polynomials. Let D be a torus
invariant Weyl divisor on X (or on P(E)), and f a global section of OX(D). Observe that for
j = 1, . . . , n the Newton polytope of the differential Xj

∂
∂Xj

f is contained in the rational polytope

ej + ∂jNewt(f), and in particular ∂
∂Xj

f is a global section of the sheaf 1
Xj
OX(D −Dej ) (or of the

sheaf 1
Xj
OP(E)(D −Dẽj )). Direct computation shows the following proposition.

Proposition 2.5.6. Homogenization and differentiation commute: ∂̃
∂Xj

f = ∂
∂xj

f̃ .
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We denote by Φ̃F the homogenization of the Lagrangian Φ, living in the Cox ring SE . This
makes sense since P(E) defines a global section of the sheaf OP(E)(DΦF ), associated to the Cay-
ley polytope Newt(ΦF ) = Cay(Newt(f0), . . . ,Newt(fm)). By the above Proposition, each of the
defining equations

0 = (M(x)λ)j = λ0
∂

∂xj
f̃0 + · · ·+ λm

∂

∂xj
f̃m =

∂

∂xj
Φ̃F (λ, x)

of Z is equal to the homogenization ˜̀j of `j = ∂̃
∂Xj

ΦF (λ, x). Here ˜̀j is considered a global section

of the sheaf OP(E)(DΦF −Dẽj ).

We denote by L̃F = (f̃1, . . . , f̃m, ˜̀1, . . . , ˜̀n) the homogenized Lagrange system. On the one
hand, we observed above that Z is equal to the vanishing locus of ˜̀1, . . . , ˜̀n. On the other hand,
the vanishing locus of f̃1, . . . , f̃m in P(E) is the preimage π−1(V ) of the vanishing locus V of
f̃1, . . . , f̃m in X. We obtain the following Proposition.

Proposition 2.5.7. The vanishing locus of L̃F in P(E) is the intersection Z ∩ π−1(V ).

The following lemma shows that the homogeneous critical point equations introduced in this
chapter restrict, on Cn, to the expected affine critical point equations.

Lemma 2.5.8. The following three equalities hold:

V ∩ Cn = V ◦, W ∩ Cn = W ◦ (2.9)

Z ∩ π−1(Cn) = Z◦ (2.10)

where the intersection in (2.9) is on X and the intersection in (2.10) is on P(E).

Proof. The first of the equalities is clear, by the definition of V as the closure of V ◦. To see the
second equality, we prove that the entries of M are homogenizations of the entries of the Jacobian
(∇f0, . . . ,∇fm). This is a direct consequence of Proposition 2.5.6, since for every i = 0, . . . ,m

and j = 1, . . . , n it holds ∂̃
∂Xj

fi = ∂
∂xj

f̃i. The third equality is analogous, since homogenising the

defining equations `1, . . . , `n of Z◦ yields the defining equations ˜̀1, . . . , ˜̀n of Z.

We close this section with the following generalization of the Euler equation.

Proposition 2.5.9. Let D =
∑

ρ∈Σ(1) aρDρ be a torus invariant Weyl divisor, f a global section
of OX(D) and τ ∈ Σ(1) a ray. Then the generalized Euler equation

− xτ
∂

∂xτ
f̃ + τ1x1

∂

∂x1
f̃ + · · ·+ τnxn

∂

∂xn
f̃ = −aτ f̃ (2.11)

holds for the homogenization f̃ ∈ S of f .
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Proof. Equation (2.3) reads f̃ =
∑

m∈Zn cm
∏
ρ∈Σ(1) x

〈m,ρ〉+aρ
ρ and we have

− xτ
∂

∂xτ
f̃ + τ1x1

∂

∂x1
f̃ + · · ·+ τnxn

∂

∂xn
f̃

=
∑
m∈Zn

cm

(
−xτ

∂

∂xτ
+ τ1x1

∂

∂x1
+ · · ·+ xn

∂

∂xn

) ∏
ρ∈Σ(1)

x
〈m,ρ〉+aρ
ρ

=
∑
m∈Zn

cm(−〈m, τ〉 − aτ +m1 + ae1 + · · ·+mn + aen)
∏

ρ∈Σ(1)

x
〈m,ρ〉+aρ
ρ

=
∑
m∈Zn

cm(−aτ )
∏

ρ∈Σ(1)

x
〈m,ρ〉+aρ
ρ = −aτ f̃ .

2.6 Computing the number of critical points

In this section we finally prove our main results, Theorem 2.3.6, Theorem 2.3.7 and Theorem 2.3.11,
relying on the results from Section 2.5. There we characterized critical points of (POP) in two ways.
On the one hand, as an intersection V ∩W in X. This is done in equation (2.9) of Lemma 2.5.8.
On the other hand by means of homogenized Lagrange equations L̃F in the Cox ring of P(E).
This is done in in equation (2.10) of Lemma 2.5.8. In this section we show that all intersections
are transversal and happen in Cn. This characterises the number of critical points as products of
cohomology classes. In the case of Theorem 2.3.6 this product is a mixed volume. The proof of
Theorem 2.3.11 rests on a characterization of [W ] as a Porteous’ class. The assumptions of our main
theorems will be used in the following places: we will use the assumption that A be admissible in the
proof of Proposition 2.6.2 below. For the proof of Proposition 2.6.1 below we need that the closure
V of the constraint locus V(f1, . . . , fm) is smooth. This is guaranteed by stronger assumption that
A is strongly admissible in the proof of Theorem 2.3.6 and Theorem 2.3.7. For Theorem 2.3.11 we
assume X to be smooth in order to employ Porteus’ formula.

2.6.1 Preliminary results

We start by proving some technical statements that are needed for the desired transversality results.
For the rest of the section we again fix the assumptions from Section 2.5.2, and furthermore assume
that V does not intersect the singular locus of X. This is in practice guaranteed since we always
assume that X is appropriate for the monomial support A of F . Now V is the vanishing locus of
generic sections of basepoint free line bundles on the smooth locus of X. It follows from Bertini’s
Theorem, that V is also smooth, which is the motivation for Definition 2.3.4 and Definition 2.3.2.

For the next proposition we need the following notion. Similar to the projection Cn+1\{0} → Pn,
there exists the open subset UΣ ⊆ CΣ(1) with a projection τ : UΣ → X. For a subvariety V of X,
we define the cone C(Y ) over Y to be the closure of the preimage τ−1(Y ) in CΣ(1). The intersection
C(Y ) ∩ UΣ forms a principal bundle over Y . In particular, C(Y ) ∩ UΣ is smooth if Y is smooth.

Proposition 2.6.1. The matrices M =
(
∇̃f̃0, . . . , ∇̃f̃m

)
and

(
∇̃f̃1, . . . , ∇̃f̃m

)
have full ranks

m+ 1 and m everywhere on V
(
f̃0, . . . , f̃m

)
and V

(
f̃1, . . . , f̃m

)
respectively.

Proof. The proof for the second matrix is analogous, so we only present the proof for

M =
(
∇̃f̃0, . . . , ∇̃f̃m

)
.
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Let x ∈ V
(
f̃0, . . . , f̃m

)
be arbitrary and σ ∈ Σ the unique cone such that x is contained in the

torus orbit O(σ). Let M̃ denote the matrix with rows(
∂

∂xρ
f̃0, . . . ,

∂

∂xρ
f̃m

)
(2.12)

for each ray ρ in Σ(1). The left kernel of M̃ is the tangent space of the cone C
(
V
(
f̃0, . . . , f̃m

))
in

CΣ(1). The Jacobian M̃σ of the cone over the variety O(σ)∩V
(
f̃0, . . . , f̃m

)
is a submatrix of M̃ . Its

rows correspond to those rays ρ that are not contained in σ. By our assumption at the beginning
of this section, V is disjoint from the singular locus of X, and we can apply Bertini’s Theorem to

show that V
(
f̃0, . . . , f̃m

)
is a smooth variety. Furthermore, the intersection O(σ)∩V

(
f̃0, . . . , f̃m

)
is transversal by [Kho78], so M̃σ is of full rank m + 1 at x. We now finish the proof by showing

that the row span of M̃σ is contained in the row span of M . Let ρ be any ray that is not contained
in σ. To show that the corresponding row (2.12) of M̃σ is contained in the row span of M , we
apply Proposition 2.5.9 to all functions f̃0, . . . , f̃m. The right side of equation (2.11) vanishes, and
we obtain ρ1x1

...
ρnxn


T

M = xρ


∂
∂xρ

f̃0

...
∂
∂xρ

f̃m


T

.

Proposition 2.6.2. The gradient ∇̃f̃0 =
(

∂
∂xj

f̃0

)
j=1,...,n

does not vanish on any torus orbit.

Proof. Towards a contradiction we assume that there exists a cone σ ∈ Σ such that for every
j = 1, . . . , n the polynomial ∂

∂xj
f̃0 vanishes on the associated torus orbit O(σ) of X. We denote by

∂
∂xj

f̃0

∣∣∣
O(σ)

the restriction of ∂
∂xj

f̃0 to the cone over O(σ). It is obtained by substituting all variables

xρ with zero, where ρ is contained in σ.
Now consider the face Newt(f0)σ of Newt(f0) exposed by σ. For every lattice point m of

Newt(f0)σ the monomial

∂

∂xj

∏
ρ∈Σ(1)

x
〈m,ρ〉+aρ,0
ρ , aρ,0 = −min{〈m, ρ〉 : m ∈ Newt(f0)}

of ∂
∂xj

f̃0 only vanishes on O(σ) if mj = 0. In particular, the face Newt(f0)σ can only contain the

single element 0. By assumption 2.3.2 on X, 0 is a smooth vertex of Newt(f0), and dual to the
cone Rn≥0. Since σ reveals the vertex 0, it has to intersect the interior of the positive orthant Rn≥0

and in fact both cones are equal. This leaves us with the case where the torus orbit is {0}. But
the gradient ∇̃f̃0 does not vanish uniformly at 0.

Let again V and W denote the varieties from Subsection 2.5.2.

Proposition 2.6.3. The variety V ∩W is of dimension 0.

Proof. Towards a contradiction we assume that there exists a torus orbit O(σ), and a curve C such

that C is contained in the intersection W ∩ V ∩ O(σ). We denote by f̃0

∣∣∣
O(σ)

the restriction of f̃0
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to O(σ). It is obtained by substituting all variables xρ with zero, where ρ is contained in σ. We

now distinguish two cases: either f̃0

∣∣∣
O(σ)

vanishes somewhere on O(σ), or it is a scalar multiple

of a monomial. In the first case f̃0

∣∣∣
O(σ)

vanishes on C by genericity. In particular, the matrix M

drops rank somewhere on the vanishing locus V
(
f̃0, . . . f̃m

)
, contradicting Proposition 2.6.1.

In the second case we now derive a contradiction from Proposition 2.6.1 by showing that the

matrix
(
∇̃f̃1, . . . , ∇̃, f̃m

)
drops rank somewhere on C. Suppose f̃0

∣∣∣
O(σ)

is a monomial. Then each

restriction ∂
∂xj

f̃0

∣∣∣
O(σ)

is either a monomial or zero, and by Proposition 2.6.2 there is an index

l = 1, . . . , n such that ∂
∂xl
f̃0

∣∣∣
O(σ)

is not zero. Without loss of generality we assume l to be 1.

Consider the following matrix, M∗, obtained by subtracting for each j = 2, . . . , n from the j−th
row of M the multiple

∂
∂xj

f̃0

∂
∂x1

f̃0

(
∂

∂x1
f̃0, . . . ,

∂

∂x1
f̃m

)
of the first row, eliminating the first entry in the process:

M∗ =


∂
∂x1

f̃0
∂
∂x1

f̃1 . . .
∂
∂x1

f̃m
0
...
0

A

 .
Since M drops rank everywhere on C and ∂

∂x1
f̃0 is not identically zero, A also drops rank on C.

Let µ = (µ1, . . . , µn)T be a vector of rational functions on O(σ) satisfying

Aµ = 0

everywhere on C. Since the expression µ1
∂
∂x1

f̃1 + · · · + µn
∂
∂xn

f̃1 is not a monomial on O(σ),
it vanishes at some point x in C by genericity. This shows that µ(x) is in the right kernel of(
∇̃f̃1(x), . . . , ∇̃f̃m(x)

)
, finishing the proof.

Lemma 2.6.4. The intersection Z ∩ V(f̃1, . . . , f̃m) is transversal and contained in the big torus
(C∗)n+m in the toric variety P(E).

Proof. The image of Z ∩ V(f̃1, . . . , f̃m) under the natural projection π : P(E) −→ X is W ∩
V(f̃1, . . . , f̃m), which by Proposition 2.6.3 is finite. In fact, we prove below that π bijectively
identifies both sets. In particular, the n defining equations of Z, given by M(x)λ = 0, form a
complete intersection when restricted to V(f̃1, . . . , f̃m).

To inductively apply Bertini to the equations (M(x)λ)j = 0 we now show that, for varying

coefficients of f0, Z ∩ V(f̃1, . . . , f̃m) defines a basepoint free family of varieties on the vanishing
locus V(f̃1, . . . , f̃m) in P(E). To do this, we fix any element x of V and show that Z does not have a

fixed point in the fiber π−1(x). By Proposition 2.6.1 the last m columns
(
∇̃f̃1, . . . , ∇̃f̃m

)
of M are

linearly independent. In particular, varying the first column ∇̃f̃0 changes the unique solution [λ]
to M(x)λ = 0. It now suffices to see that the gradient ∇̃f̃0 does not vanish uniformly at x, which
by Proposition 2.6.2 is true for generic coefficients of f0. To finally see that Z ∩ V(f̃1, . . . , f̃m) is
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contained in the big torus orbit, we apply the same Bertini type argument to show transversality of

the intersection O ∩ V
(
f̃1, . . . , f̃m

)
∩Z. Here O denotes any torus orbit on P(E). For dimensional

reasons only for the big torus this intersection can be non empty.

2.6.2 The proof of Theorem 2.3.6

The idea behind the proof of Theorem 2.3.6 is to study the system of homogenized Lagrange
equations L̃F = (f̃1, . . . , f̃m, ˜̀1, . . . , ˜̀n). We will show that it comprises global sections of Q-Cartier
divisors that intersect transversally and away from infinity. This expresses the number of solutions
as a product of Chern classes, which is a mixed volume.

For the rest of this subsection we impose the assumptions of Theorem 2.3.6. Let Σ be the normal
fan of the Minkowski sum of the polytopes Newt(f0), . . . ,Newt(fn), and let X be the associated
normal toric variety. Then the assumptions from the beginning of Subsection 2.5.2 are fulfilled,
since X is appropriate for A, and V does not intersect the singular locus of X.

Let again ΦF denote the Lagrangian ΦF (λ, x) = f0 −
∑m

i=1 λifi, and the partial differentials
∂
∂xj

(f0 −
∑m

i=1 λifi) of ΦF are denoted by `j . For each j = 1, . . . , n, we defined the homogenization˜̀
j of `j as a section of the divisor DΦF −Dẽj on P(E). We first prove that, up to isomorphy, this

divisor is associated to the rational polytope ∂jNewt(ΦF ).

Lemma 2.6.5. For all j = 1, . . . , n, the divisor DΦF − Dẽj on P(E) is linearly equivalent to the
divisor associated to the rational polytope ∂jNewt(ΦF ).

Proof. We now prove that the divisor DΦF −Dẽj is associated to the polytope ej + ∂jNewt(ΦF ).
Note that ej + ∂jNewt(ΦF ) is the intersection of Newt(ΦF ) with the affine halfspace {xj ≥ 1}. We
have to prove that the support function of Newt(ΦF ) ∩ {xj ≥ 1} takes the same value on all rays
of ΣE , except for ẽj , where it differs by one. Let v be any element of Rn+m. The value

−min{〈w, v〉 : w ∈ Newt(ΦF )}

of the support function of Newt(ΦF ) on v can only differ if the face Newt(ΦF )v is contained in the
facet

Newt(ΦF )ẽj = Newt(ΦF ) ∩ {xj = 0}.

Note that a face of the form Newt(ΦF ){0}×ei is equal to the Cayley polytope
Cay(A0, . . . ,Ai−1,Ai+1, . . . ,Am), where we omit one of the constraints. In particular, it is al-
ways a facet, so we may restrict to rays of the form ρ̃. Let now ρ̃ be a ray such that Newt(ΦF )ρ̃ is
contained in Newt(ΦF )ẽj . By Proposition 2.6.6 below we have

Cay (Newt(f0)ρ, . . . ,Newt(fm)ρ)

= Newt(ΦF )ρ̃

⊆Newt(ΦF )ẽj

= Cay (Newt(f0)ej , . . . ,Newt(fm)ej ) ,

implying Newt(fi)
ρ ⊆ Newt(fi)

ej for all i = 0, . . . ,m. We obtain(
m∑
i=0

Newt(fi)

)ρ
=

m∑
i=0

Newt(fi)
ρ ⊆

m∑
i=0

Newt(fi)
ej =

(
m∑
i=0

Newt(fi)

)ej
,

which is an inclusion of facets of the Minkowski sum
∑m

i=0 Newt(fi), showing ρ = ej .
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Proposition 2.6.6. Let σ be a cone in the normal fan Σ(P1 + · · · + Pn). Then the face of
Cay(P1, . . . , Pn) exposed by σ̃ is equal to the Cayley polytope of the faces P σ1 , . . . , P

σ
n :

Cay(P1, . . . , Pn)σ̃ = Cay(P σ1 , . . . , P
σ
n ). (2.13)

Proof. This can be done by direct computation. A different argument relies on Proposition 2.6.7
below. For this, denote by Xσ the closure of the torus orbit of XΣ corresponding to σ ∈ Σ. By
Proposition 2.6.7, the equation (2.13) is equivalent to the equality

OP(E)(1)
∣∣
Xσ

= OP(E|Xσ )(1).

Proposition 2.6.7. Let X be a toric variety and E =
⊕
LPi be a direct sum of line bundles on

X. Then the relative O(1) bundle of P(E) is represented by the Cayley polytope: Cay(P1, . . . , Pm)

Proof. The space of sections H0(P(E),O(1)) is canonically isomorphic to H0(X, E) =⊕
iH

0(X,LPi). Moreover, H0(X,LPi) is the weight space of H0(X, E) with respect to (C∗)m
torus acting fiberwise on P(E) corresponding to i-th basis vector of Zm. Since the weights of the
base torus acting on H0(X,LPi) is given by the lattice points of Pi, we obtain the result.

Before proving Theorem 2.3.6 we need to show a statement about the intersection of Q-Cartier
divisors.

Lemma 2.6.8 (Generic intersection of Q-cartier divisors). Let X be a normal, proper variety of
dimension n with Weyl divisors D1, . . . , Dn, and let k be an integer such that O(kDi) is a line-bundle
for each i = 1, . . . , n. Let f̃i be a global section of O(Di) for i = 1, . . . , n such that V(f̃1, . . . , f̃n) is
a zero dimensional smooth scheme contained in the smooth locus of X. Then

kn#V(f̃1, . . . , f̃n) = c1(O(kD1)) · · · c1(O(kDn)).

Proof. The length of the zero-dimensional scheme V((f̃1)k, . . . , (f̃n)k) is equal to the prod-
uct c1(O(kD1)) · · · c1(O(kDn)) of Chern classes. On the other hand, since f̃1, . . . , f̃n in-
tersect transversally, each isolated point of V((f̃1)k, . . . , (f̃n)k) is isomorphic to the scheme
SpecC[x1, . . . , xn]/〈xk1, . . . , xkn〉. In particular we have

kn · length(V(f̃1, . . . , f̃m)) = length(V((f̃1)k, . . . , (f̃n)k)),

finishing the proof.

Proof of Theorem 2.3.6. The vanishing locus of the homogenized system of Lagrange equations
L̃F = (f̃1, . . . , f̃m, ˜̀1, . . . , ˜̀n) is the intersection of Z with the vanishing locus of f̃1, . . . , f̃m and
by Lemma 2.6.4 this intersection is a smooth zero-dimensional variety, contained in the big torus.
By Lemma 2.5.8, the algebraic degree of sparse polynomial optimization is equal to its cardinality.
According to Lemma 2.6.5, the system L̃F comprises global sections of Q-Cartier divisors, associated
to the respective, rational, polytopes Newt(f1), . . . ,Newt(fm), ∂1Newt(ΦF ), . . . , ∂nNewt(ΦF ). As a
consequence of Lemma 2.6.8, and using multilinearity of the mixed volume, we can express the
number of solutions to L̃F as the mixed volume (2.4) of these polytopes.
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2.6.3 The proof of Theorem 2.3.11

In this section we study the intersection of the determinantal variety W with the vanishing locus
V of f̃1, . . . , f̃m in X. The proof of Theorem 2.3.11 rests on a proof of transversality, and a
characterisation of the cohomology class [W ] as a Porteous’ class.

We start by recalling Porteous’ formula, also called the Giambelli–Thom–Porteous formula. For
more details refer to chapter 14 in [Ful98] and chapter 12 in [EH16]. The following statement is a
special case of Theorem 12.4 in [EH16].

Theorem 2.6.9. (Porteous’ formula) Let ϕ : E −→ F be a morphism of vector bundles of rank
m + 1 ≤ n on a smooth proper variety X of dimension n. We denote by W the (possibly non
reduced) degeneracy locus of ϕ, supported on the set

|W | = {x ∈ X : ϕx : E(x) −→ F(x) is not injective}.

If W is pure of codimension n−m then the cohomology class of W is the n−m graded part

[W ] = (s(E) c(F))n−m

of the product of the total Segre class s(E) and the total Chern class c(F).

We need the following, modified version of Porteous’ formula which only requires W to be pure
dimensional after restricting to a subvariety V of X.

Corollary 2.6.10. Under the assumptions of Theorem 2.6.9, let V be an irreducible closed subva-
riety of X of codimension k, which intersects W transversally and let the intersection V ∩W be
pure of codimension n−m+ k. Then the cohomology class [V ∩W ] is given by

[V ∩W ] = [V ] · (s(E) c(F))n−m .

Proof. Note that V ∩ W is the degeneracy locus of the restriction ϕ|V . By applying Porteous
formula to φ|V : E|V → F|V we get

[V ∩W ] = (s(E|V ) c(F|V ))n−m+k .

Lastly we notice that (s(E|V ) c(F|V ))n−m+k = [V ] · (s(E) c(F))n−m by naturality of characteristic
classes.

Lemma 2.6.11. Under the assumptions of Theorem 2.3.11 the intersection V ∩W is transversal
and contained in the torus (C∗)n.

Proof. Under the assumptions of Theorem 2.3.11, the assumptions from Section 2.5.2 are satisfied.
The inclusion in the big torus follows from Lemma 2.6.4. We now show that transversality of the
intersection V ∩ W follows from transversality of the intersection of Z with V(f̃1, . . . , f̃m). Let
π : P(E) −→ X denote the natural projection and let z = (x, [λ]) be any element of P(E). If Z
intersects π−1(V ) transversally at z, then for the tangent spaces TZ,z and Tπ−1(V ),z at z it holds

TZ,z + Tπ−1(V ),z = TP(E),z. (2.14)

To see that W and V intersect transversally at x we show TW,x + TV,x = TX,x. We apply the
differential dπ to both sides of (2.14) and note that we have the inclusions

dπ(TZ,z) ⊆ TW,x, dπ(Tπ−1(V ),z) ⊆ TV,x, dπ(TP(E),z) = TX,x.
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Proof of Theorem 2.3.11. By Lemma 2.5.8 the algebraic degree of sparse polynomial optimization
is the cardinality of V ∩W ∩ Cn. By Lemma 2.6.11, the scheme theoretic intersection V ∩W is a
smooth variety of dimension zero, contained in the big torus. We now finish the proof by verifying
the assumptions of Corollary 2.6.10.

Let Dfi be the Weyl divisors introduced in equation (2.8). By the assumptions of Theo-
rem 2.3.11, X is smooth. In particular, all divisors considered in this proof are Cartier. The
variety W is defined to be the degeneracy locus of the matrix M , whose entries are global sections
of the bundle OX(Dfi−Dej ). The transpose of M defines a morphism ϕ : E → F of vector bundles,
where

E = OX(−Df0)⊕ · · · ⊕ OX(−Dfm), and F = OX(−De1)⊕ · · · ⊕ OX(−Den).

Now W is the degeneracy locus of ϕ, further V ∩W is pure of dimension zero. Finally, LAi =
OX(Dfi) which finishes the proof.

2.7 A polyhedral homotopy algorithm for computing critical
points

In this final section we demonstrate how Question 3 from the introduction of this thesis can be
addressed, based on our previous results. In the case where we have a linear objective and a sin-
gle constraint we explicitly construct a polyhedral homotopy algorithm for solving the Lagrange
system LF . A bottleneck in computing a start system for the Lagrange system LF is solving the
tropicalization of LF . Our algorithm relies on an explicit description of the tropical solution set of
LF . The superiority over traditional homotopy continuation algorithms is demonstrated experimen-
tally. Correctness of our algorithm follows from the previous intersection theoretic computations.
We start with a reminder on polyhedral homotopy methods.

2.7.1 A discussion of polyhedral homotopy continuation

Homotopy continuation algorithms are a class of numerical algorithms used for finding all isolated
solutions to a square system of polynomial equations. Specifically, suppose you have a square
system of polynomial equations

F (x) = {f1(x), . . . , fn(x)} = 0

where fi ∈ R[x1, . . . , xn] and the number of complex solutions to F (x) = 0 is finite. Homotopy
continuation works by tracking solutions from an ‘easy’ system of polynomial equations (called
the start system) to the desired one (called the target system). This is done by constructing a
homotopy,

H(t;x) : [0, 1]× Cn −→ Cn,

such that

1. H(0;x) = G(x) and H(1;x) = F (x),

2. the solutions to G(x) = 0 are isolated and easy to find

3. H has no singularities along the path t ∈ [0, 1) and

4. H is sufficient for F .
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Here we call a homotopy H sufficient for F = H(1;x) if, by solving the ODE initial value
problems ∂H

∂t + ∂H
∂x ẋ = 0 with initial values {x : G(x) = 0}, all isolated solutions of F (x) = 0 can

be obtained.
One example of a homotopy, known as a straight-line homotopy, is defined as a convex combi-

nation of the start and target systems:

H(t;x) = γ(1− t)G(x) + tF (x)

where γ ∈ C is a generic constant. Choosing generic γ ensures H(x; t) is non-singular for t ∈ [0, 1).
Path tracking is typically done using standard predictor-corrector methods. For more information,
see [BHSW13, Stu02]. The main question when employing homotopy continuation techniques is
how to select such an ‘easy’ start system. If the target system roughly achieves the Bézout bound
then a total degree start system is suitable. An example of this is

G(x) = {xd11 − 1, . . . , xdnn − 1}

where deg(fi) = di.
Often in applications, the target system is defined by sparse polynomial equations. In this case,

the Bézout bound can be a strict upper bound on the total number of complex solutions so using a
total degree start system leads to wasted computation. The BKK bound, gives an upper bound on
the number of complex solutions in the torus to a sparse polynomial system. If the BKK bound is
much less than the Bézout bound, a polyhedral start system is a more economic choice, compared
to a total degree start system. The downside of polyhedral homotopy is that the start system is
more difficult to construct. This is not surprising since computing the mixed volume is #P hard
[Kha93]. Still, there is an algorithm that computes this start system [HS95a]. We briefly outline
the idea behind polyhedral homotopy here but give [HS95a] as a more complete reference.

Recall that F = {f1, . . . , fn}, where fi =
∑

α∈Ai cαx
α ∈ C[x1, . . . , xn]. For each mono-

mial, α ∈ Ai, we consider a lifting, w(α), and the corresponding lifted system Fw(x, t) =
(fw1 (x, t), . . . , fwn (x, t)) where

fi(x, t) =
∑
α∈Ai

cαx
αtw(α). (2.15)

Solutions to Fw(x, t) = 0 are algebraic functions in the parameter t. Such solutions can be
written as

x(t) = (x1(t), . . . , xn(t)).

In a neighborhood of t = 0, each solution can be written as x(t) = (x1(t), . . . , xn(t)) where

xi(t) = yit
ui + higher order terms in t

where yi 6= 0 is a constant and ui ∈ Q. Substituting this into (2.15) we have

fi(x, t) = cαy
αtu

Tα+w(α) + higher order terms in t.

By [HS95a, Lemma 3.1] We wish to find u such that

min
u∈Rn

{uTα+ w(α)}

is achieved twice. For each solution u, the vector (u, 1) is an inner normal to one of the lower
facets of the Cayley polytope of F . Further more, each such solution, u, then induces a binomial
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polynomial system Bu which can be solved using Smith normal forms as well as a homotopy to
track solutions from Bu(x) = 0 to F (x) = 0. The sum of the number of solutions to Bu(x) = 0 for
each solution u is equal to the BKK bound of F (x). Therefore, if the coefficients of F are generic
with respect to its monomial support, then polyhedral homotopy will track one homotopy path for
each solution to F (x) = 0. We illustrate this on a small example.

Example 2.7.1. Consider the system of one polynomial equation in one unknown

f(x) = x3 − x2 + 2x− 1 = 0.

We wish to solve this polynomial system using homotopy continuation and a polyhedral start
system. To do this we consider a lifted system of f which we obtain by weighting each monomial
of f by some power of t:

ft = tω3x3 − tω2x2 + 2tω1x− tω0 .

Now suppose we choose weighting (ω0, ω1, ω2, ω3) = (0, 3, 1, 2) so

ft = t2x3 − tx2 + 2xt3 − t0.

A figure of this lifting is given in Figure 2.3. Solutions to ft = 0 lie in the field of Puiseux series of
t and are of the form

x(t) = x̂ta + higher order terms in t

where a ∈ Q and x̂ ∈ C∗. For x(t) to be a root of ft, the lowest terms in t must cancel out.
Substituting in x(t) = x̂ta into ft, we have

ft(x(t)) = x̂3t3a+2 − x̂2t2a+1 + 2x̂ta+3 − t0. (2.16)

To have cancellation of the lowest terms, we must have the minimum exponent in t achieved twice.
In other words,

min
a
{3a+ 2, 2a+ 1, a+ 3, 0}. (2.17)

must be achieved twice. There are six options:

1. 3a+ 2 = 2a+ 1 < a+ 3, 0

2. 3a+ 2 = a+ 3 < 2a+ 1, 0

3. 3a+ 2 = 0 < 2a+ 1, a+ 3

4. 2a+ 1 = a+ 3 < 3a+ 2, 0

5. 2a+ 1 = 0 < 3a+ 2, a+ 3

6. a+ 3 = 0 < 3a+ 2, 2a+ 1

The only feasible solutions are the first and fifth where a = −1 and a = −1
2 , respectively. For the

first case, we substitute a = −1 into (2.16) giving

x̂3t−1 − x̂2t−1 + 2x̂t2 − 1

39



Figure 2.2: The homotopy h1(x̂, t) from Example 2.7.1. The red point is the starting point induced by the binomial
system x̂3 − x̂2 = 0 while the green point is the target solution, namely a zero of f(x) = 0.

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2.3: The polyhedral lift from Example 2.7.1

Multiplying through by t, we get

h1(x̂, t) = x̂3 − x̂2 + 2x̂t3 − t.

When t = 0 we have h1(x̂, 0) = x̂3 − x̂2 which has a unique C∗ solution, x̂ = 1.

Similarly, we consider when a = −1
2 and substitute this value of a into (2.16) to get

h2(x̂, t) = x̂3t
1
2 − x̂2 + 2x̂

7
2 − 1.

When t = 0 we have h2(x̂, 0) = −x̂2− 1 which has two C∗ solutions, x̂ = ±
√
−1. Therefore, to find

all three solutions to f(x) = 0, we track the solution x̂ = 1 using the homotopy h1(x̂, t) from t = 0
to t = 1 and the solutions x̂ = ±

√
−1 using the homotopy h2(x̂, t) from t = 0 to t = 1. A graphical

depiction of the homotopy h1 is shown in Figure 2.2.

Finally, one can observe in Figure 2.3 that the lifted polytope of Newt(f) has two lower facets,
F1 = Conv{(0, 0), (2, 1)} and F2 = Conv{(2, 1), (3, 2)}. F1 has inner normal given by (−1

2 , 1) while
F2 has inner normal given by (−1, 1). These are precisely the solutions to (2.17).

The main bottleneck with employing polyhedral homotopy algorithms is finding the binomial
start systems and corresponding homotopies. Example 2.7.1 shows how finding these start systems
is equivalent to solving a tropical system for a fixed lifting. The main contribution of this section
is to find these binomial start systems for polynomial systems arising as the Lagrange systems of
polynomial optimization programs.
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2.7.2 A linear optimization algorithm given a single constraint

We consider (POP) when m = 1 and deg(f0) = 1. Specifically, we consider a polynomial optimiza-
tion problem of the form

min
x∈Rn

uTx s.t. f(x) = 0 (2.18)

where u ∈ Rn and f(x) is a general degree d ≥ 2 polynomial. We wish to design a homotopy
algorithm to find all critical points to (2.18). We first consider the Lagrange system Lu,f =
{`1, . . . , `n, f} of (2.18) where

`i = ui − λ
∂

∂xi
f(x). (2.19)

If f is a generic degree d polynomial and u ∈ Rn is generic, then by Theorem 2.3.7, the number
of critical points to (2.18) is the same as that of

min
x∈Rn

uTx s.t. f̂(x) = 0 (2.20)

where f̂ =
∑n

i=1 cix
d
i and ci is generic for i ∈ [n]. The Lagrange system of (2.20) is Lu,f̂ =

{ˆ̀1, . . . , ˆ̀
n, f̂} where for i ∈ [n]

ˆ̀
i = ui − dλcixd−1

i (2.21)

Observe that by Theorem 2.3.7, not only are the algebraic degrees of (u, f) and (u, f̂) the same,
but the BKK bound of Lu,f̂ is the same as that of Lu,f .

The Lagrange system Lu,f̂ is sparser than Lu,f and in fact a binomial start system G for Lu,f̂
can be constructed efficiently. The following lemma shows that this is desirable since start systems
for Lu,f̂ are start systems for Lu,f as well. We first need an observation about the existence of
straight-line homotopies.

Proposition 2.7.2. Let F (x; p) : Cn × Ck −→ Cn denote a family of polynomial systems F (x; p)
that depends polynomially on parameters p ∈ Ck and F (x; p1) a fixed member of that family. Then
there is a nonempty set U ⊆ Ck, open and dense in the Euclidean topology, such that for every
parameter p0 in U the straight-line homotopy

H(t;x) = tF (x; p1) + (1− t)F (x; p0)

is sufficient for F (x; p1).

Proof. By the Parameter Continuation Theorem by Morgan and Sommese [SW05] there exists a
proper algebraic subvariety Σ ⊂ Ck with the following property: Let ρ : [0, 1]→ Ck be any smooth
path and H(t, x) = F (x, ρ(t)) the corresponding homotopy. If

ρ([0, 1)) ∩ Σ = ∅,

then as t → 1, the limits of the solution paths x(t) satisfying H(x(t), t) = 0 include all the isolated
solutions to F (x; ρ(1)) = 0. In particular, H(t, x) is a sufficient homotopy.

From now on we identify the complex affine space Ck with real affine space R2k and denote by
Σ the closure of Σ in real projective space P2k+1

R . Consider the projection π : P2k+1
R → P2k

R away
from the point p1. Since the codimension of Σ, considered as a manifold, is at least two, the image
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π
(
Σ
)

has codimension at least one in P2k
R . In particular, the image π(p0) of a generic element p0

is not contained in π
(
Σ
)
. Since the image ρ([0, 1)) of the straight path

ρ(t) = (1− t)p1 + tp0

between p0 and p1 is is contained in the fiber π−1(π(p0)), it does not intersect Σ. Consequently the
to ρ associated straight-line homotopy is sufficient.

Let BKK(Lu,f̂ ) denote the BKK bound of Lu,f̂ .

Lemma 2.7.3. Let G be a zero dimensional square system of polynomials with exactly BKK(Lu,f̂ )
solutions. There is a sufficient homotopy connecting G to Lu,f .

Proof. Let F (x; c) denote the family of polynomials with monomial support contained in the sup-
port of Lu,f . In particular, the coefficient vector c has one entry for each monomial of each
polynomial of Lu,f . We denote by F (x; c0) a generic member of this family.

The desired homotopy will be constructed explicitly as a composition. We start by connecting
F (x; c0) to both Lu,f and G with a straight-line homotopy, which by Proposition 2.7.2 is a sufficient
homotopy in both cases. We denote the straight-line homotopy from F (x; c0) to G by H. It now
suffices to prove that H does not merge any solutions of F (x; c0), allowing us to define the inverted
homotopy H∗ by setting for t in (0, 1) H∗(t, x) = H(1− t, x) and H∗(0, x) = G(x). Since tracking
the roots of F (x; c0) to the roots of G along the sufficient homotopy H defines a surjective map, it
is enough to prove that F (x; c0) and G have the same number of solutions.

By the results of Bernstein and Kushnirenko [Ber75, Kou76], the number of solutions of F (x; c0)
is equal to the BKK bound of Lu,f . By Theorem 2.3.7, the polynomial system Lu,f achieves this
bound. Furthermore, as we noted at the beginning of Section 2.7.2, Lu,f and Lu,f̂ have the same
number of solutions:

#{Lu,f̂} = #{Lu,f = 0} = BKK(Lu,f̂ ). (2.22)

At the same time the number of solutions to G is equal to the BKK bound of Lu,f̂ , which is upper
bounded by the BKK bound of Lu,f by inclusion on Newton poytopes:

#{Lu,f̂} ≤ #{G = 0} ≤ BKK(Lu,f̂ ). (2.23)

Together, inequalities (2.22) and (2.23) imply that Lu,f̂ and G have the same root count.

We now give the main result of this section.

Theorem 2.7.4. For any d ≥ 2 consider the Lagrange system of (2.18). Then for generic u and
f there are d(d − 1)n−1 complex solutions to the corresponding Lagrange system. Moreover, all of
these solutions can be found via the homotopy

H(x, λ; t) = (1− t)B(x, λ) + tγLu,f (x, λ)

where

B(x, λ) =


u1 − dλc1x

d−1
1 = 0

...

un − dλcnxd−1
n = 0

c0 + c1x
d
1 = 0,

(2.24)

γ ∈ C is a generic constant and Lu,f (x, λ) is the Lagrange system of (2.18).
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Proof. In order to design a polyhedral homotopy algorithm as described in [HS95a], in the following
we construct a binomial start system B of Lu,f̂ by solving a tropical system. By the proof of
Lemma 2.7.3 we then obtain a homotopy from B to Lu,f . Note that, by genericity of f , this
homotopy can be chosen to be a straight-line homotopy.

By Lemma 2.7.3 it suffices to design a polyhedral homotopy algorithm as described in [HS95a]
for Lu,f̂ . In order to define this algorithm, we need to first find a binomial start system of Lu,f̂
which can be done by solving a tropical system.

Let ai be the tropical variable corresponding to xi and b the tropical variable corresponding to
λ. Then for a given lifting ω ∈ R3n+1, the corresponding tropical system that we want to solve is

min
a∈Qn,b∈Q

{ω1,1, (d− 1)a1 + b+ ω1,2}

...

min
a∈Qn,b∈Q

{ωn,1, (d− 1)an + b+ ωn,2}

min
a∈Qn,b∈Q

{ωn+1,1, da1 + ωn+1,2, . . . , dan + ωn+1,n+1}

(2.25)

We consider a specific lifting that induces a unique solution to (2.25), giving a homotopy from
one binomial start system to the desired target system (2.21). With the particular lifting

ωij =


0 if 1 ≤ i ≤ n+ 1, j = 1

1− d if 1 ≤ i ≤ n, j = 2

−d if (i, j) = (n+ 1, 2)

1− d else

(2.26)

This gives the following tropical system:

min
a∈Qn,b∈Q

{0, (d− 1)a1 + b+ 1− d}

...

min
a∈Qn,b∈Q

{0, (d− 1)an + b+ 1− d}

min
a∈Qn,b∈Q

{0, da1 − d, da2 + 1− d, . . . , dan + 1− d}

(2.27)

We claim there is a unique solution to (2.27) given by ai = 1 for i ∈ [n] and b = 0.
First, observe that the first n equations of (2.27) force (d− 1)ai + b+ 1− d = 0 for i ∈ [n]. This

gives ai = d−1−b
d−1 . Substituting this into the final equation and simplifying we have that

min
a∈Qn,b∈Q

{0, bd

1− d
,
bd

1− d
+ 1, . . . ,

bd

1− d
+ 1}

must have minimum attained twice. It is then clear that the only solution is b = 0 where the
minimum is achieved at the first two terms. Back substituting then gives that ai = d−1

d−1 = 1 for
i ∈ [n]. The binomial start system B(x, λ) defined in (2.24) then follows immediately from the
solution to this tropical system.

Observe that Bézout’s Theorem gives an upper bound that (2.21) has at most dn+1 solutions
but we see that the binomial system (2.24) has d(d− 1)n−1 solutions. This gives another proof of
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n 20 30 40 50 60 70 80 90
Polyhedral 0.14 0.51 1.01 2.30 4.49 NA NA NA

H 0.07 0.20 0.35 0.87 1.65 2.54 3.78 6.45

Table 2.1: Average time (sec) to find all critical points to (2.18) when d = 2 using standard polyhedral homotopy
versus the homotopy, H, outlined in Theorem 2.7.4.

n 6 7 8 9 10 11 12
Polyhedral 0.29 0.93 3.06 9.79 27.42 88.37 556.92

H 0.21 0.68 2.29 7.35 20.35 70.02 395.64

Table 2.2: Average time (sec) to find all critical points to (2.18) when d = 3 using standard polyhedral homotopy
versus the homotopy, H, outlined in Theorem 2.7.4.

the bound given in [NR09] for hypersurfaces and highlights the benefit of using a polyhedral start
system over a total degree start system.

Finally, we wish to remark that the homotopy defined in Theorem 2.7.4 will work for find-
ing all smooth critical points for the optimization of a linear function over any hypersurface, f ,
so long as Newt(f) is contained in Conv{0, de1, . . . , den}. When Newt(f) is a strict subset of
Conv{0, de1, . . . , den}, then the algebraic degree of f can be less than d(d− 1)n−1. This homotopy
may lead to wasted computation in tracking divergent paths.

2.7.3 Numerical results

We implement the homotopy in Theorem 2.7.4 with start system (2.24) using the path tracking
function in HomotopyContinuation.jl. We compare our implementation of the homotopy outlined
in Theorem 2.7.4 against the polyhedral one in HomotopyContinuation.jl and give the time it
takes to run each homotopy algorithm in Table 2.1, Table 2.2 and Table 2.3. The computations
are all run using a 2018 Macbook Pro with 2.3 GHz Quad-Core Intel Core i5.

In all cases, our homotopy algorithm is much faster than the standard off the shelf software.
When the hypersurface is of degree two, there are only two complex critical points. Despite this,
standard polyhedral homotopy was unable to compute a start system when n ≥ 70. In contrast,
our specialized algorithm was able to find both critical points in a few seconds. We note that in
this case, the Bézout bound of the corresponding polynomial system is 2n+1 where n is the number
of variables. When n = 70, the Bézout bound is ≈ 2.36× 1021, so it is unreasonable to expect that
a total degree homotopy would work in this case.

Similarly, in Table 2.2 and Table 2.3 we see that when the degree of the hypersurface is three
or four, our algorithm increasingly outperforms the state-of-the-art polyhedral homotopy software
as the number of variables increases.

n 3 4 5 6 7 8 9
Polyhedral 0.03 0.17 1.16 7.04 40.11 228.48 1225.78

H 0.03 0.15 0.83 5.15 34.79 181.11 1027.64

Table 2.3: Average time (sec) to find all critical points to (2.18) when d = 4 using standard polyhedral homotopy
versus the homotopy, H, outlined in Theorem 2.7.4.
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2.8 Conclusion

In this chapter we studied polynomial programs that exhibit sparsity patterns with the tools of toric
geometry. Our focus was their algebraic complexity which we measure in terms of the number of
their critical points. We quantified this number in many instances in Theorem 2.3.6, Theorem 2.3.7
and Theorem 2.3.11. We further demonstrated in some special cases that these results can be
made effective by implementing a polyhedral homotopy algorithm that efficiently solves Lagrange
systems, based on Theorem 2.7.4.
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Chapter 3

Certifying zeros of polynomial
systems using interval arithmetic

Numerical algebraic geometry has been emerging as an alternative to symbolic computation meth-
ods with increasing performance and also versatility. Although many problems can be solved that
are infeasible with symbolic methods, the computation results lack a certificate for correctness. This
drawback keeps researchers from using numerical computation in proofs and pure mathematics.
This chapter develops interval arithmetic as a practical tool for certification in numerical algebraic
geometry. We present a built-in function certify in the software HomotopyContinuation.jl. It
proves the correctness of an isolated nonsingular solution to a square system of polynomial equa-
tions, resting on Krawczyk’s method. We demonstrate that it dramatically outperforms earlier
approaches to certification. We see this contribution as a powerful new tool in numerical algebraic
geometry.

3.1 Introduction

Systems of polynomial equations appear in many areas of mathematics, as well as in many applica-
tions in the sciences and engineering. In physics and chemistry the geometry of molecules is often
modelled with algebraic constraints on the distance or the angle between atoms. In kinematics the
relation between robot joints is defined by polynomial equations. In systems biology the steady-
state equations for many bio-chemical reaction networks are algebraic equations. A central task in
all those applications is computing the isolated zeros of a system of polynomials.

The study of zeros of polynomial systems is at the heart of algebraic geometry. The field of
computational algebraic geometry is often associated with symbolic computations based on Gröbner
bases. But over the last thirty years numerical algebraic geometry (NAG) [SW05] emerged as an
alternative; enabling us to solve problems infeasible with symbolic methods. An important algo-
rithmic framework in NAG is numerical homotopy continuation. Several implementations of this
are available: Bertini [BHSW], Hom4PS-3 [CLL14], HomotopyContinuation.jl [BT18], NAG4M2
[Ley11] and PHCpack [Ver99].

Hauenstein and Sottile remark in [HS12] that while all of these softwares “routinely and reliably
solve systems of polynomial equations with dozens of variables having thousands of solutions”,
they have the shortcoming that “the output is not certified” and that “this restricts their use in
some applications, including those in pure mathematics”. To remedy this, Hauenstein and Sottile
developed the software alphaCertified [HS12]. It can rigorously certify that Newton’s method,
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starting at a given numerical approximation, converges quadratically to a true zero by using Smale’s
α-theory [Sma86]. Hauenstein and Sottile’s contribution to numerical algebraic geometry was a
milestone. Yet, alphaCertified produces rigorous certificates using expensive rational arithmetic.
This turns the big advantage of numerical computations, namely that they are fast, upside-down
and makes certification of large problems prohibitively expensive. Thus, up to this point, the
majority of researchers in applied algebraic geometry were kept from using numerical methods,
because certification was too expensive and because without certification numerical methods can’t
be used for proofs.

We give researchers a new powerful tool in numerical algebraic geometry. Our implementa-
tion is integrated in HomotopyContinuation.jl [BT18], so that in principle we can certify all
zeros of a system of polynomial equations (see Section 3.1.2 below for more details). With a fast
implementation certification becomes the default and is not just an option and enables the ex-
tensive use of numerical methods for rigorous proofs. This is underlined by at least 15 research
works [BRST23, BFS21, KPR+21, BPS21, BHIM22, Ear21, Mar21, Wei21, LAR21, Stu21, BT21,
ABF+23, BKK20, SY21, ST21] that have used our implementation in the last two years.

3.1.1 Contribution

Our contribution to the field of computational and applied algebraic geometry is an extremely
fast and easy-to-use implementation of a certification method. This implementation outperforms
alphaCertified by several orders of magnitude. It makes the certification of solutions often
a matter of seconds and not hours or days. This leap in performance can turn certification in
numerical algebraic geometry into default and not just an option.

Starting from version 2.1, HomotopyContinuation.jl has a function certify1. The function
certify takes as input a square polynomial system F and a numerical approximation of a complex
zero x ∈ Cn (or a list of zeros). If the output says “certified”, then this is a rigorous proof that a
solution of F = 0 is near x. If the output says “not certified”, then this does not necessarily mean
that there is no zero near x, just that the method couldn’t find one. Figure 3.2 shows an example
of certify.

We combine interval arithmetic and Krawczyk’s method with numerical algebraic geometry to
rigorously certify solutions to square systems of polynomial equations. In technical terms, our im-
plementation returns strong interval approximate zeros. We introduce this notion in Definition 3.3.8
below. The strong interval approximate zero consists of a box in Cn, which contains a unique true
zero of the polynomial system. If the input is a list of zeros, the routine returns a list of distinct
strong interval approximate zeros. Therefore, our method can be used to prove hard lower bounds
on the number of zeros of a polynomial system. Combined with theoretical upper bounds this can
constitute rigorous mathematical proofs on the number of zeros of such systems. We explain this
in more detail in the next subsection. In addition, if the given polynomial system is real, we give
a certificate whether the certified zero is a real zero (the approximate zero does not need to be
real for this). The returned boxes may also be used to check whether a real zero is positive real.
Therefore, our method can also be used to prove lower bounds on the number of real and positive
real zeros of a polynomial system.

It is also possible to give a square system of rational functions as input to our implementation.
Although this chapter is mostly formulated in terms of polynomial systems, Krawczyk’s method
also applies to square systems of rational functions (in fact, to all analytic functions Rn → Rn; see

1The technical documentation is available at
https://www.juliahomotopycontinuation.org/HomotopyContinuation.jl/stable/certification
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Section 3.3). Consequently, all statements about using our implementation for proofs are equally
valid for square systems of rational functions.

3.1.2 Certifying all zeros

Our implementation is integrated in HomotopyContinuation.jl [BT18]. This is a software
for numerically solving systems of polynomials equations via homotopy continuation. The ba-
sic idea was already explained in Chapter 2, but we repeat it for the reader: suppose that
F (x) = (f1(x), . . . , fn(x)) is a system of polynomials in n variables x = (x1, . . . , xn). To com-
pute the solutions of the systems of equation F (x) = 0 one takes another system of polynomials
G(x) = (g1(x), . . . , gn(x)), called start system, for which the zeros are simple to compute. Then,
F and G are joined with a path in the vector space of systems of polynomials. This path defines
a homotopy H(x, t) : Cn × C→ C, such that H(x, 1) = G(x) and H(x, 0) = F (x). The zeros of G
are continued towards the zeros of F by solving the ODE initial value problems ∂H

∂t + ∂H
∂x ẋ(t) = 0,

where x(1) ranges over the zeros of G. For more details see the textbook [SW05].

In the last paragraph there is nothing special about polynomials. This approach works for
any analytic functions F and G. However, in the case of systems of polynomial equations we can
choose G such that we compute all zeros of F . This follows from the Parameter Continuation
Theorem by Morgan and Sommese [MS89]: suppose that F (x) = F (x; p0) is a point in family of
polynomial systems F (x; p) that depends polynomially on parameters p ∈ Ck. The Parameter Con-
tinuation Theorem says that there exists a proper algebraic subvariety Σ ⊂ Ck with the following
property. Let γ(t) : [0, 1]→ Ck with γ(0) = p0 be a continuous path and H(x, t) the corresponding
homotopy. If γ((0, 1])∩Σ = ∅, then as t→ 0, the limits of the solution paths x(t) with H(x(t), t) = 0
include all the isolated solutions to F (x; p0) = 0. This includes both regular solutions and solutions
with multiplicity greater than one. Consequently, every parameter outside Σ provides a suitable
start system for F .

The Parameter Continuation Theorem implies the existence of start systems, such that we can
compute all zeros of F , but it does not tell us how to set up these start systems, nor how to
compute their zeros. In fact, different choices of families of parametrized systems lead to different
start systems and thus different homotopy methods. In HomotopyContinuation.jl [BT18] one can
choose between two well-established strategies for choosing start systems: the so-called totaldegree
start system and the polyhedral start system [HS95a].

Coming back to interval arithmetic we see that the zeros computed by polynomial homotopy
continuation can be used as input for certification, so that we can certify all solutions of a system
of polynomial equations. There is one subtlety, though. Although the Parameter Continuation
Theorem asserts that in principle we can find all solutions, since homotopy continuation involves
numerical computations we can’t rule out the possibiliy that some computations of solutions paths
fail. Still, combining certification with homotopy continuation always gives lower bounds on the
number of zeros. This can be exploited in situations, where we know upper bounds. An example of
such a scenario in enumerative geometry is discussed in Section 3.5.1 below, where we certify 3264
real zeros of a system of polynomials that is known to have at most 3264 complex zeros. Another
example from optimization is discussed in [BSW21, Section 3.3]. Here, certifying all zeros of a
system of polynomial equations helps to rigorously compute the minimal Euclidean distance of a
point to an algebraic hypersurface. In Chapter 2 we generalize the results from [BSW21] in several
ways. The constraint set is now allowed to be a complete intersection of higher codimension than
one, and the objective function needs not be the euclidean distance. In Chapter 4 below we will
study similar bounds in the context of optimizing decision rules and provide bounds to the number
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of critical points of the associated polynomial program.

3.1.3 Comparison to previous works

There are other implementations of certification methods using Krawczyk’s method and inter-
val arithmetic, e.g., the commercial MATLAB package INTLAB [Rum99], the Macaulay2 package
NumericalCertification [Lee19], and the Julia package IntervalRootFinding.jl [BS]. The
theory of Krawczyk’s method and interval arithmetic are explained, for instance, in [Rum83].

Unlike INTLAB, the source code of our implementation is freely available and can be verified
by anyone. Additionally, INTLAB doesn’t support the use of arbitrary precision interval arithmetic
which limits its capability to certify badly conditioned solutions. NumericalCertification, as of
version 1.0, takes as input not the numerical approximation of a complex zero x ∈ Cn, but instead
a box I in Cn. Then, NumericalCertification attempts to certify that interval I is a strong
interval approximate. The process of going from a numerical approximation x to a good candidate
interval I needs particular care, as illustrated in Section 3.4. INTLAB and NumericalCertification

also both require manual work to obtain a list of all distinct strong interval approximate zeros. The
package IntervalRootFinding.jl finds all zeros of a multivariate function inside a given box in
Rn, whereas our implementation works in Cn and additionally certifies reality of zeros; see Section
3.3.2.

3.1.4 Outline

The rest of this chapter is organized as follows. In the next two sections we give a short introduction
to interval arithmetic and explain the Krawczyk method. Section 3.4 focuses on implementation
details. In Section 3.5 we demonstrate features of our implementation using two examples. In
Section 3.3.2 we discuss how to certify reality of zeros, and for completeness, we give a proof of
Krawczyk’s method in Section 3.3.

3.2 Interval arithmetic

Before we discuss our implementation, let us briefly introduce the basics of interval arithmetic.
Since the 1950s researchers [Moo66, Sun58] have worked on interval arithmetic, which allows

certified computations while still using floating point arithmetic. We briefly introduce the concepts
from interval arithmetic which are relevant for our chapter.

3.2.1 Real interval arithmetic

Real interval arithmetic concerns computing with compact real intervals. Following [May17] we
denote the set of all compact real intervals by

IR := {[a, b] | a, b ∈ R, a ≤ b}.

For X,Y ∈ IR and the binary operation ◦ ∈ {+,−, ·, /} we define

X ◦ Y = {x ◦ y |x ∈ X, y ∈ Y }, (3.1)

where we assume 0 /∈ Y in the case of division. The interval arithmetic version of these binary
operations, as well as other standard arithmetic operations, have explicit formulas. See, e.g.,
[May17, Sec. 2.6] for more details.

49



3.2.2 Complex interval arithmetic

We define the set of rectangular complex intervals as

IC := {X + iY | X,Y ∈ IR},

where X + iY = {x + iy | x ∈ X, y ∈ Y } and i =
√
−1. Following [May17, Ch. 9] we define the

algebraic operations for I = X + iY, J = W + iZ ∈ IC in terms of operations on the real intervals
from (3.1):

I + J := (X +W ) + i(Y + Z), I · J := (X ·W − Y · Z) + i(X · Z + Y ·W ) (3.2)

I − J := (X −W ) + i(Y − Z),
I

J
:=

X ·W + Y · Z
W ·W + Z · Z

+ i
Y ·W −X · Z
W ·W + Z · Z

.

It is necessary to use (3.1) instead of complex arithmetic for the definition of algebraic operations in
IC. The following example from [May17] demonstrates this. Consider the intervals I = [1, 2]+i[0, 0]
and J = [1, 1] + i[1, 1]. Then, {x · y|x ∈ I, y ∈ J} = {t(1 + i) | 1 ≤ t ≤ 2} is not a rectangular
complex interval, while I · J = [1, 2] + i[1, 2] is.

The algebraic structure of IC is given by following theorem; see, e.g., [May17, Theorem 9.1.4].

Theorem 3.2.1. The following holds.

1. (IC,+) is a commutative semigroup with neutral element.

2. (IC,+, ·) has no zero divisors.

Furthermore, if I, J,K,L ∈ IC, then

3. I · (J +K) ⊆ I · J + I ·K, but equality does not hold in general.

4. I ⊆ J,K ⊆ L, then I ◦K ⊆ J ◦ L for ◦ ∈ {+,−, ·, /}.

Working with interval arithmetic is challenging because of the third item from the previous
theorem: distributivity does not hold in IC. As a consequence, in IC the evaluation of polynomials
depends on the exact order of the evaluation steps. Therefore, the evaluation of polynomial maps
F : ICn → IC is only well-defined if F is defined by a straight-line program, and not just by a list
of coefficients. Figure 3.1 demonstrates this issue in an example. See, e.g., [BCS13, Sec. 4.1] for
an introduction to straight-line programs.

x y z

+

·

x z y

· ·

+

Figure 3.1: The picture shows two straight-line programs for evaluating the polynomial f(x, y, z) = (x + y)z. Let
I = ([−1, 0], [1, 1], [0, 1])T . Then, the program on the left evaluated at I yields f(I) = ([−1, 0] + [1, 1])[0, 1] = [0, 1],
while the program on the right yields f(I) = [−1, 0][0, 1] + [1, 1][0, 1] = [−1, 1].

Arithmetic in ICn is defined in the expected way. If I = (I1, . . . , In), J = (J1, . . . , Jn) ∈ ICn,

I + J = (I1 + J1, . . . , In + Jn).
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Scalar multiplication for I ∈ IC and J ∈ ICn is defined as I · J = (I · J1, . . . , I · Jn). The product
of an interval matrix A = (Ai,j) ∈ ICn×n and an interval vector I ∈ ICn is

A · I := I1 ·

A1,1
...

An,1

+ · · ·+ In ·

A1,n
...

An,n

 . (3.3)

Similar to the one-dimensional case (ICn,+) is a commutative semigroup with neutral element.

3.3 Certifying zeros with interval arithmetic

In 1969 Krawczyk [Kra69] developed an interval arithmetic version of Newton’s method. Later
in 1977 Moore [Moo77] recognized that Krawczyk’s method can be used to certify the existence
and uniqueness of a solution to a system of nonlinear equations. Interval arithmetic and interval
Newton’s method are a prominent tool in many areas of applied mathematics; e.g., in chemical en-
gineering [GS05], thermodynamics [GD05] and robotics [KSS15]. See also the overview in [Rum10].

The results in this section are stated for general functions. For a practical implementation it is
however necessary to compute interval enclosures (see Definition 3.3.1). We discuss our approach in
the context of polynomial systems in Section 3.4.1 below. A generalization in this spirit is discussed
in [BLL19].

3.3.1 Krawczyk’s method

In this section we recall Krawczyk’s method. First, we need three definitions.

Definition 3.3.1 (Interval enclosure). Let F : Cn → Cn. A map �F : ICn → ICn is an interval
enclosure of F if for every I ∈ ICn we have {F (x) | x ∈ I} ⊆ �F (I).

In the rest of this chapter we use the notation �F to denote the interval enclosure of F . Also, we
do not distinguish between a point x ∈ Cn and the complex interval [Re(x),Re(x)]+i[Im(x), Im(x)]
defined by x. We simply use the symbol “x” for both terms so that �F (x) is well-defined.

Definition 3.3.2 (Interval matrix norm). Let A ∈ ICn×n. We define the operator norm of A as

‖A‖∞ := max
B∈A

max
v∈Cn

‖Bv‖∞
‖v‖∞ , where ‖(v1, . . . , vn)‖∞ = max1≤i≤n |vi| is the infinity norm in Cn.

Next we introduce an interval version of the Newton operator, the Krawczyk operator [Kra69].

Definition 3.3.3. Let F : Cn → Cn be differentiable, and JF be its Jacobian matrix seen as a
function Cn → Cn×n. Let �F be an interval enclosure of F and �JF be an interval enclosure
of JF . Furthermore, let I ∈ ICn and x ∈ Cn and let Y ∈ Cn×n be an invertible matrix. We define
the Krawczyk operator

Kx,Y (I) := x− Y ·�F (x) + (1n − Y ·�JF (I))(I − x).

Here, 1n is the n× n-identity matrix.

Remark 3.3.4. In the literature, Kx,Y (I) is often defined using F (x) and not �F (x). Here, we
use this definition, because in practice it is usually not feasible to evaluate F (x) exactly. Instead,
F (x) is replaced by an interval enclosure.
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Remark 3.3.5. The second part of Theorem 3.3.6 motivates to find a matrix Y ∈ Cn×n such that
||1n − Y ·�JF (I)||∞ is minimized. A good choice is an approximation of the inverse of JF (x).

We are now ready to state the theorem behind Krawczyk’s method. The first proof for real
interval arithmetic is due to Moore [Moo77]. A proof for complex data is at least known since the
work by Rump [Rum83]. Note that all the data in the theorem can be computed using interval
arithmetic.

Theorem 3.3.6. Let F : Cn → Cn be differentiable and I ∈ ICn. Let x ∈ I and Y ∈ Cn×n be an
invertible complex n× n matrix. The following holds:

1. If Kx,Y (I) ⊂ I, there is a zero of F in I.

2. If additionally
√

2 ‖1n − Y�JF (I)‖∞ < 1, then F has exactly one zero in I.

Remark 3.3.7. One can prove a version of this theorem without
√

2 in the second item. We state
the version above, because our implementation uses the

√
2 factor. In most cases, it does not make

much of a difference whether one has this additional factor or not. In our implementation, the
infinity norm ‖1n − Y�JF (I)‖∞ is evaluated using interval arithmetic.

To simplify our language when talking about intervals I ∈ ICn satisfying Theorem 3.3.6 we
introduce the following definitions.

Definition 3.3.8. Let F : Cn → Cn be differentiable and I ∈ ICn. Let Kx,Y (I) be the associated
Krawczyk operator (see Definition 3.3.3). If there exists an invertible matrix Y ∈ Cn×n, such
that Kx,Y (I) ⊂ I, we say that I is an interval approximate zero F . We call I a strong interval
approximate zero of F if in addition

√
2‖1n − Y�JF (I)‖∞ < 1 .

Remark 3.3.9. The name “strong interval approximate zero” is not common in the field of in-
terval arithmetic. We introduce it as a reference to the work of Shub and Smale and the software
alphaCertified [HS12] that inspired our work. Shub and Smale coined the name strong approxi-
mate zero for points in the radius of quadratic convergence of Newton’s method.

Definition 3.3.10. If I is an interval approximate zero, then, by Theorem 3.3.6, I contains a zero
of F . We call such a zero an associated zero of I. If I is a strong interval approximate zero then
there is a unique associated zero and we refer to it as the associated zero of I.

The notion of strong interval approximate zero is stronger than the definition suggests at first
sight. We not only certify that a unique zero of F exists inside I, but even that we can approximate
this zero with arbitrary precision. This is shown in the next proposition.

Proposition 3.3.11. Let I be a strong interval approximate zero of F and let x∗ ∈ I be the unique
zero of F inside I. Let x ∈ I be any point in I. We define x0 := x and for all i ≥ 1 we define the
iterates xi := xi−1 − Y F (xi−1), where Y ∈ Cn×n is the matrix from Definition 3.3.8. Then, the
sequence (xi)i≥0 converges (at least linearly) to x∗.

Proof. Define GY (x) = x − Y F (x). Let (xi)i≥0 be the sequence defined in the statement of the
proposition. By assumption, x0 ∈ I and xi+1 = GY (xi), i ≥ 0. Let I ∈ ICn be an interval vector
and x ∈ I. Then,

GY (I) ⊂ Kx,Y (I).
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(see, e.g., [BLL19, Lemma 2].). This implies, using an induction argument, that xi ∈ I for all i.
Furthermore, if x∗ denotes the unique zero of F in I, we have

x∗ − xi+1 = GY (x∗)−GY (xi)

We also have (see, e.g., [BLL19, Lemma 2].)

GY (x∗)−GY (xi) ∈ (1n − Y ·�JF (I))Re(x∗ − xi) + (1n − Y ·�JF (I))iIm(x∗ − xi).

(Note that we can’t apply the distributivity law because of Theorem 3.2.1 3.). Applying norms and
using submultiplicativity yields

‖x∗ − xi+1‖∞ ≤ ‖(1n − Y ·�JF (I))‖∞ (‖Re(x∗ − xi)‖∞ + ‖Im(x∗ − xi)‖∞).

Since ‖Re(x∗ − xi)‖∞ + ‖Im(x∗ − xi)‖∞ ≤
√

2‖x∗ − xi‖∞ it holds

‖x∗ − xi+1‖∞ ≤
√

2‖1n − Y ·�JF (I)‖∞‖x∗ − xi‖∞. (3.4)

We get ‖x∗ − xi+1‖∞ < c · ‖x∗ − xi‖∞ with a constant c :=
√

2‖1n − Y · �JF (I)‖∞ < 1 by
Theorem 3.3.6. This shows linear convergence.

3.3.2 Certifying reality

For many applications only the real zeros of a polynomial system are of interest. Since numerical
homotopy continuation computes in Cn, it is important to have a rigorous method to determine
whether a zero is real.

Recall from Definition 3.3.8 the notion of strong interval approximate zero.

Lemma 3.3.12. Let F : Cn → Cn be a real square system of polynomials (or rational functions)
and I ∈ ICn a strong interval approximate zero of F . Then there exists x ∈ I and Y ∈ Cn×n
satisfying Kx,Y (I) ⊂ I and

√
2 ‖1n − Y�JF (I)‖∞ < 1. If additionally {z̄ | z ∈ Kx,Y (I)} ⊂ I, the

associated zero of I is real.

Proof. Theorem 3.3.6 implies that F has a unique zero s ∈ Kx,Y (I) ⊂ I. The element-wise complex
conjugate s̄ is also a zero of F . If we have that s̄ ∈ {z̄ | z ∈ Kx,Y (I)} ⊂ I, then s̄ = s, since otherwise
s̄ and s would be two distinct zeros of F in I. This contradicts the uniqueness result from Theorem
3.3.6, finishing the proof.

For a wide range of applications positive real zeros are of particular interest.

Corollary 3.3.13. Let F : Cn → Cn be a real square system of polynomials and I ∈ ICn a strong
interval approximate zero of F satisfying the conditions of Lemma 3.3.12. If Re(I) > 0 then the
associated zero of I is real and positive.

If the reality test in Lemma 3.3.12 fails for a strong interval approximate zero I ∈ Cn then this
does not necessarily mean that the associated zero of I is not real. A sufficient condition that I is
not real is that there is a coordinate such that the imaginary part of it does not contain zero.

Lemma 3.3.14. Let F (x) be a square system of polynomials or rational functions and let I ∈ ICn
be a strong interval approximate zero of F . If there exists k ∈ {1, . . . , n} such that 0 /∈ Im(Ik) then
the associated zero of I is not real.
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Proof. The associated zero x of I is contained in I. Since 0 /∈ Im(Ik) it follows xk /∈ R, x /∈ Rn.

Now assume that the certification routine produced a list I of m distinct strong interval ap-
proximate zeros for a given system F , and that m also agrees with the theoretical upper bound on
the number of isolated, nonsingular zeros of F . If we apply Lemma 3.3.12 to Ik ∈ I, then we obtain
only a lower bound, say r, on the number of real zeros of F . However, combined with Lemma 3.3.14
we can also obtain an upper bound of the number of real zeros. If these two bounds agree we obtain
a certificate that, among the associated zeros of the intervals in I, there are exactly r real zeros.
An application of this is, e.g., the study of the distribution of the number of real solutions of the
power flow equations [LZBL20].

3.4 Implementation details

In this section we describe details of our implementation of Krawcyzk’s method.
The certification routine takes as input a square polynomial system F : Cn → Cn and a

finite list X ⊂ Cn of (suspected) approximations of isolated nonsingular zeros of F . It is also
possible to provide a square system of rational functions as input, but in the following we focus on
polynomial systems for simplicity. Our implementation returns a list of strong interval approximate
zeros I = {I1, . . . , Im} in ICn, such that no two intervals Ik and I`, k 6= `, overlap. If two
strong interval approximate zeros don’t overlap then this implies that their associated zeros are
distinct. Additionally, if F is a real polynomial system then for each Ik ∈ I it is determined
whether its associated zero is real. In this chapter we take as an input for out certification routine
approximations of all isolated nonsingular solutions X ⊂ Cn of F , as computed by numerical
homotopy continuation methods as discussed in Section 3.1.2. This is a prototypical application.
We do however want to emphasize that our method can be applied to any set of approximate
solutions. In [BT21] for example the latter are numerical eigenvalues.

3.4.1 Interval enclosures for polynomial systems

The fact that distributivity does not hold in IC makes it necessary for us to define the polynomial
system F : Cn → Cn, and its interval enclosure �F , by a straight-line program, and not just by
a list of coefficients. The overestimation of the interval enclosure �F increases with the size of
the straight-line program. Therefore, it is good to express F and its enclosure �F by the smallest
straight-line program possible. To achieve this, HomotopyContinuation.jl automatically applies
a multivariate version of Horner’s rule to reduce the number of operations necessary to evaluate F
and �F .

Remark 3.4.1. Our implementation of interval enclosures can also be used to prove that a poly-
nomial map F : Cn → Cm with real coefficients, evaluated at a real point p ∈ Rn, is positive. To
verify this, one takes an interval I ∈ ICn of the form I = J + i[0, 0]×n such that p ∈ J . If �F is an
interval enclosure of F , and if �F (I) ⊂ Rm>0 + i[0, 0]×m, then this is a proof that F (p) ∈ Rm>0.

3.4.2 Machine interval arithmetic

In the next subsection we give a method to construct a candidate I ∈ ICn for a strong interval
approximate zero. Before, we need to study machine interval arithmetic; the realization of interval
arithmetic with finite precision floating point arithmetic. We assume the standard model of floating
point arithmetic [Hig02, Section 2.3], where the result of a floating point operation is accurate
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up to relative unit roundoff u: fl(x ◦ y) = (x ◦ y)(1 + δ), where |δ| ≤ u and ◦ ∈ {+,−, ∗, /}.
For instance, following the IEE-754 standard, the unit roundoff in double precision arithmetic is
u = 2−53 ≈ 2.2 · 10−16. The key property in the context of interval arithmetic is that each result of
a floating point operation can be rounded outwards, such that the resulting interval contains the
true (exact) result; see, e.g., [May17, Section 3.2]. Therefore, given X,Y ∈ IC the result of X ◦ Y ,
◦ ∈ {+,−, ∗, /}, is fl(X ◦ Y ) := {(x ◦ y)(1 + δ) | |δ| ≤ u, x ∈ X, y ∈ Y } in machine arithmetic. This
interval contains X ◦ Y . It is larger. Additionally, for a given x ∈ IC, all intervals of the form
{x + (|Re(xj)| + i|Im(xj)|)δ | |δ| ≤ µ} with 0 < µ ≤ u are indistinguishable when working with
precision u.

Consequently it is possible that the Krawczyk operator Kx,Y , see Definition 3.3.3, is a contrac-
tion for the interval I, but that machine arithmetic can’t verify this, because fl(X ◦Y ) is larger than
X ◦ Y . In such a case, the unit roundoff u needs to be sufficiently decreased. For this reason our
implementation uses machine interval arithmetic based on double precision arithmetic as well as, if
necessary, the arbitrary precision interval arithmetic implemented in Arb [Joh17]. For instance, we
could not certify all solutions in the example in Section 3.5.1 below using only 64-bit arithmetic,
because the zeros are too ill-posed.

3.4.3 Determining strong interval approximate zeros

In a first step, the certification routine attempts to produce for a given x0 ∈ X a strong interval
approximate zero I ∈ ICn. Recall that for I ∈ ICn to be a strong interval approximate zero we
need by Theorem 3.3.6 to have a point x ∈ I, and a matrix Y ∈ Cn×n such that Kx,Y (I) ⊂ I,
and
√

2 ‖1n − Y�JF (I)‖∞ < 1.

Given a point x0 ∈ X and a unit roundoff u, the point x0 is refined using Newton’s method to
maximal accuracy. Let this refined point be x. Here, we assume that x0 is already in the region of
quadratic convergence of Newton’s method. Next, the point x needs to be inflated to an interval I
with x ∈ I. This process is called ε-inflation in the literature [May17, Sec. 4.3]. However, choosing
the correct I is a hard problem: if I is too small or too large, then the Krawcyzk operator is not a
contraction.

In spite of these difficulties, we found that the following heuristic to determine I works very
well. First, we compute JF (x)−1 in floating arithmetic, which yields a matrix Y . Then, we set

I := (xj ± |(Y ·�F (x))j |u−
1
4 )j=1,...,n,

where u is the unit roundoff. The motivation behind this choice is as follows: If we assume x to be
in the region of quadratic convergence of Newton’s method, it follows from the Newton-Kantorovich
theorem that ||JF (x)−1F (x)||∞ is a good estimate of the distance between x and the convergence

limit x∗. This distance is approximated by (Y · �F (x))j for 1 ≤ j ≤ n. The factor u−
1
4 accounts

for the overestimation by machine interval arithmetic. Here is how we arrived at this factor: The
best relative accuracy we can expect to get for the j-th entry of x∗ is about |(x∗)j | · u, so that
||I − x∗||∞ needs to be larger than (|(x∗)j |u)−1/2 for quadratic convergence. On the other hand,
we need to have an ε-inflation of at least |(Y ·�F (x))j | so that the inflated interval contains (x∗)j .

In the typical case we have |(Y · �F (x))j | > 1, i.e., |(Y · �F (x))j | > |(Y · �F (x))j |
1
2 . All of this

motivates us to use |(Y · �F (x))j |u−
1
2 as the inflation constant. However, to account for hidden

constant factors we need to increase this estimate. We found that replacing u−
1
2 by u−

1
4 produces

a good estimate that works well in all the examples we tested.
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Finally, if I doesn’t satisfy the conditions in Theorem 3.3.6, then the procedure is repeated
with a smaller unit roundoff u. This repeats until either a minimal unit roundoff is reached or the
certification is successful.

3.4.4 Producing distinct intervals

Assume now that the steps in Section 3.4.3 have been performed for all x ∈ X. We obtain a list
of strong interval approximate zeros I1, . . . , Ir ∈ ICn. In a final step we want to select a subset
M ⊂ {1, . . . , r} such that for all k, j ∈M , k 6= j, the intervals Ik and Ij do not overlap. If two strong
interval approximate zeros do not overlap then it is guaranteed that they have distinct associated
zeros. A simple approach to determine M is to compare all intervals pairwise. However, this
approach requires us to perform

(
r
2

)
interval vector comparisons. For larger problems this becomes

prohibitively expensive: in the example in Section 3.5.2 the number of necessary comparisons is
already larger than 4 · 109.

Instead, we employ the following improved scheme to determine all non-overlapping intervals.
First, we pick a random point q ∈ Cn and compute in interval arithmetic for each Ik, k ∈ M , the
squared Euclidean distance dk ∈ IR between Ik and q. Due to the guarantees of interval arithmetic
we have that dk and d` overlap if Ik and I` overlap (but the converse it not necessarily true). Next,
we check for all overlapping intervals dk, d` ∈ {dk ∈ IR | k = 1, . . . , r}, whether Ik and I` overlap,
and if so, we group them accordingly. This allows us to construct the set M by selecting those
intervals which don’t overlap with any other and by picking one representative of each cluster of
overlapping intervals. The worst case complexity of this procedure still requires O(r2) operations,
but in the common case where no or only a small number of intervals overlap O(r log r) operations
are sufficient.

3.5 Applications

In this section we showcase example applications of our certification method. The first example
is from enumerative geometry and demonstrates how our method can be used for rigorous proofs.
The second example is an application from kinematics, which shows that our implementation can
deal with large problems and that our strategy for producing distinct intervals from Section 3.4.4 is
indispensable. This is underlined by the fact that with our computation we improve a result from
the literature. Both examples emphasize the speed compared to the symbolic approaches, and they
rely on the option to modulate the precision thanks to our usage of Arb [Joh17].

All reported timings were obtained on an desktop computer with a 3.4 GHz processor running
Julia 1.5.2 and HomotopyContinuation.jl version 2.2.2.

3.5.1 3264 real conics

We demonstrate how certification methods in numerical algebraic geometry allow to prove theorems
in algebraic geometry. This example furthermore reveals the superior speed of our implementation
compared to alphaCertified.

In [BST20] alphaCertified was used to prove that a certain arrangement of five conics in the
plane had 3264 real conics, which were simultaneously tangent to each of the five given conics. Such
an arrangement is called totally real. It was known before that such arrangements exist [RTV97],
but an explicit instance was not known. The fact that alphaCertified provides a proof for a
totally real instance highlights the relevance of certification software in algebraic geometry.
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Figure 3.2: Screenshot from a Julia session, where we certify the 3264 real conics for the totally real arrangement
from [BST20]. Here, F is the system of polynomials from (12) in [BST20]. The screenshot also demonstrates the
simple syntax of our implementation.

The strategy for the computation is this. The zeros of the system (12) in [BST20] give the
coordinates of the 3264 conics which are tangent to five given conics. We compute the zeros for the
coordinates of the specific instance in [BST20, Figure 2] using HomotopyContinuation.jl. This
is a numerical computation. Therefore, it is inexact and cannot be used in a proof. Next, we take
the inexact numerical zeros as starting points for our certification method. If our implementation
outputs that it has found a real certified zero, then this is an exact result and hence it is a proof that
the zero is real. This way we can prove that indeed all the 3264 conics for the instance in [BST20,
Figure 2] are real. See also the proof of [BST20, Proposition 1] for a more detailed discussion.

The certification with alphaCertified took us more than 36 hours. In contrast, our imple-
mentation certifies the reality and distinctness of the 3264 conics in less than three seconds.

3.5.2 Numerical Synthesis of Six-Bar Linkages

Now we demonstrate that the certification routine can cope with large problems. With our com-
putation we improve a result from the literature.

We consider the kinematic synthesis of six-bar linkages that use eight prescribed accuracy points
as described in [PM14]. In this chapter, the authors derive the synthesis equations for six-bar
linkages of the Watt II, Stephenson II, and Stephenson III type. Additionally, in [PM14, Eq. (35)]
they construct a system of 22 polynomials in 22 unknowns and 224 parameters, that can be used
as a start system in a parameter homotopy to solve the synthesis equations of all three considered
six-bar linkage types.

The number of non-singular zeros of this generalized start system is reported as 92,736. It was
computed using Bertini and a multi-homogeneous start system. To certify the reported count,
we solved the generalized start system using the monodromy method [DHJ+18] implementation
in HomotopyContinuation.jl. In our computation we obtained 92,752 non-singular zeros for
a generic choice of the 224 parameters. These are sixteen more than reported in [PM14]. We
certified this count using our certification routine and obtained 92,752 distinct strong interval
approximate zeros. Therefore, we have a certificate that the generalized system has in general (at
least) 92,752 non-singular solution. This establishes that the result in [PM14] undercounts the true
number of solutions. The certification needed only 38.34 seconds which underlines the scalability
of the certification routine. Notice that the naive method for comparing intervals in Section 3.4.4
gives 4.301.420.376 pairs to check. This underlines the need for having an efficient algorithm for
comparing pairs.
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3.6 Conclusion

We reported on a novel implementation of Krawczyk’s method. Based on interval arithmetic it is
able to numerically certify isolated solutions to quadratic polynomial systems. It has already been
employed by researchers in various instances, enabling new applications of numerical computation
both within and outside of mathematics. Due to its speed, this certification method has now been
made an automatic computation step after numerically solving polynomial systems in the software
package HomotopyContinuation.jl.
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Chapter 4

Algebraic methods in decision
processes

Solving sequential decision problems has a long-standing history in computer science, economics,
mathematics, and statistics. A sequential decision problem is particularly challenging if only partial
information about the true state of the system is available to the acting agent. In this chapter
we study partially observable Markov decision processes and the optimization of their long-term
reward. We contribute a new geometric formulation of this optimization problem, and show that
it is equivalent to optimizing a linear objective subject to quadratic constraints. The feasible
set of this problem is the positive part of a join of Segre varieties subject to linear constraints.
We conduct experiments in which we solve the KKT equations or the Lagrange equations over
different boundary components of the feasible set, and compare the result to other constrained
optimization methods. Finally, we quantify the algebraic complexity of the optimization problem
in many instances by computing polar degrees of the Zariski closure of the feasible set.

4.1 Introduction

Partially observable Markov decision processes (POMDPs) offer a mathematical framework for
sequential decision-making under uncertainty. Their ability to incorporate nondeterministic effects
of actions, and partial observability, makes them particularly well suited for modelling real world
problems, but also highly complex. In the framework of POMDPs, an agent manipulates a system
in a sequence of events. It selects an action at every time step and receives an instantaneous reward
depending on the selected action and the current state of the system, which in turn influences the
state at the next time step. However, the agent selects its actions based on observations that might
not fully reveal the underlying state.

Agent System

action

observation
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We study stochastic action selection mechanisms that do not depend on the prior history of obser-
vations but only on the current observation, known as memoryless policies. A common measure
for the performance of a policy is the expectation of the instantaneous rewards, accumulated over
time, and discounted into the future. We will refer to this measure simply as the reward function.
Identifying a policy that maximizes the reward is challenging, since it is a nonconcave function that
can exhibit non global strict local optima [BR19]. Indeed it has been shown that this optimization
problem is NP-hard in general [VLB12]. A common approach is local optimization, such as policy
gradient optimization [SMSM99, AYA18], an approach that has no global optimality guarantees.
Whereas global optimality guarantees for gradient methods in fully observable systems (where the
observation fully identifies the underlying state) have been given in [BR19], for general POMDPs
such guarantees do not exist.

In this chapter we study POMDPs geometrically and express reward optimization as a linear
program with polynomial constraints. That is, we are concerned with the optimization of a linear
function over a nonconvex semialgebraic set. Our work builds on [MM22a]. We focus on the case
of deterministic observations, and prove that the polynomial constraints define a join of Segre
varieties (Theorem 4.5.4). By investigating the geometry of the semialgebraic set, we determine
upper bounds on the number of (complex) critical points of the reward optimization problem, i.e.,
its algebraic degree (Theorem 4.6.3). We then provide a computational method that solves the
optimization problem by computing the critical points via the Karush-Kuhn-Tucker conditions,
whereby we identify ways to reduce the combinatorial complexity of the problem by focusing on
relevant boundary components (Theorem 4.6.1, [MR17]). This approach is implemented using
numerical algebra methods from Chapter 3 that automatically certify the correctness of the results.
We further employ a convex relaxation of the polynomial problem to certify the global optimality
of the results. Moreover, we observe that in specific instances this numerical algebraic approach
leads to superior results than two commonly used optimization methods. Afterwards we compare
the number of critical points obtained in numerical experiments with our theoretical bounds. These
bounds to the algebraic complexity of the optimization problem are rather coarse and take into
account only the (low) degrees of the objective and constraint. A more satisfactory description
of the algebraic degree of the reward optimization problem of POMDPs will be given based on a
study of the polar degrees of state aggregation varieties with Theorem 4.8.5 in Section 4.8. This
addresses Question 1 from the Introduction of this Thesis for reward optimization. We compare
Theorem 4.8.5 to the previous bounds from this chapter, namely Theorem 4.6.3, and the bounds
from Chapter 2, namely Theorem 2.3.7 in Example 4.8.3 and Example 4.8.4. There where we also
demonstrate that the bound from Theorem 4.6.3 are tight in some, but not all cases.

The chapter is organized as follows. The following section, Section 4.2 discusses previous work.
Afterwards there is a short Prelude which we use to anticipate the geometric results from this
chapter. In Section 4.4, we introduce partially observable Markov decision processes and related
notation. In Section 4.5, we define the state aggregation variety and identify the feasible set and its
defining (in)equalities for the reward optimization problem in POMDPs with its positive part. This
is followed by Section 4.6, where we provide an upper bound on the number of complex critical points
for the optimization problem we are considering. In Section 4.7, we use the description of reward
maximization as a constrained polynomial optimization problem to solve the critical equations
numerically. Finally, in Section 4.8, we compute polar degrees of state-aggregation varieties.
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4.2 Previous work

Various approaches have been suggested to study the geometry underlying the optimization
problem. A classic line of works has established that in the fully observable case, the op-
timization problem is equivalent to a linear program over a polytope of feasible state-action
frequencies [Der70, Kal94]. These studies have been complemented by the characterization
of the set of feasible value functions of a Markov decision process as a finite union of poly-
topes [DTLR+19, WKZ+22, WDL22]. However, for partially observable systems the geometry of
the reward optimization problem is more complex. The problem can be formulated as a quadrati-
cally constrained linear program with the policy and the value function as search variables [ABZ06].
More recently, the set of feasible state-action frequencies was described as a union of convex sets
in [MGZA15] and as a semialgebraic set in [MM22a], which also provided a method for comput-
ing the polynomial constraints. The possible advantages of taking this constrained optimization
perspective in state-action space were recently studied in [MM22b] using interior point methods.

Related approaches have been proposed in other settings as well. In continuous time and space,
a convex relaxation of linear quadratic control problems based on state-action frequencies has been
proposed and studied in [LHPT08]. In [Ney03] the graphs of different stochastic games are described
as semialgebraic sets, where (generalized) Nash equilibria, including a convex relaxation for their
computation, have been studied with algebraic tools in [NT21, PS22].

4.3 Prelude

Before we formally define Markov decision processes we anticipate the geometric objects and the
main geometric ideas of the following sections. This avoids heavy notation in the hope to make
them accessible to the more geometrically inclined readers. We start off with an example of a
POMDP that will guide us through the rest of the section.

Example 4.3.1. We imagine a parent interacting with their baby in a sequence of events. The
baby could be in any of three states s1 = happy, s2 = neutral, s3 = unhappy. The parent could
observe that the baby is either o1 = not crying or o2 = crying, where state s1 and s2 lead to
observation o1 and state s3 leads to observation o2. This encodes an uncertainty of the parent
when assessing the needs of the baby. At each point in time the parent has two available actions
to perform. It can a1 = don’t feed and a2 = feed the baby. We consider the (deterministic)
transition graph depicted in Figure 4.1, with associated matrix

α =


s1, a1 s1, a2 s2, a1 s2, a2 s3, a1 s3, a2

s1 1 0 0 1 0 0
s2 0 0 0 0 0 1
s3 0 1 1 0 1 0

. (4.1)

If the baby is neutral then the action feed causes a transition to happy, similarly, if the baby
is unhappy, then feeding it transitions to neutral. But if the baby is already happy then the
same action causes a transition to unhappy, modelling overindulgence. This illustrates how partial
observability of the state can make it difficult for the agent to choose the “right” action.

According to framework of POMDPs, the parent has to choose their actions at each time step,
without memory, based only on its observation. We study the chain of events that emerges when at
each time step the parent does not feed the baby with probability 0 ≤ π1 ≤ 1 if it is not crying,
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s1 s2 s3

a1

a2 a2

a2

a1 a1

Figure 4.1: Transition graph of Example 4.3.1; states s1, s2 lead to observation o1, and s3
leads to observation o2.

and decides to not feed the baby with probability 0 ≤ π2 ≤ 1 if it is crying for fixed values π1, π2.
The pair π = (π1, π2) ∈ [0, 1]2 is called the policy of the agent.

In this thesis we measure the performance of a policy by capturing how the agent typically
interacts with the system. More concretely, for each pair of state and action (s, a) we are interested

in the expected value Φ(π)s,a := lim
N→∞

1
N+1 E

[
N∑
t=0

P(st = s, at = a)

]
. Here we denote by P(st =

s, at = a) the probability that at time step t the agent chooses action a in state s. The quantity
Φ(π)s,a records how frequent this event occurs. In our example the map Φ : [0, 1]2 −→ R3×2 is
given by:

Φ(π)T =

(
π1 − π1π2 + π1π

2
2 − π2

1 π1 − π1π2 + π1π
2
2 − π2

1 π2 − π1π2
1− 2π1 − π2 + 2π1π2 − π1π2

2 + π2
1 1− 2π1 − π2 + 2π1π2 − π1π2

2 + π2
1 1− π1 − π2 + π1π2

)
(3− 3π1 − 2π2 + 2π2π1)

.

Remark 4.3.2. This definition of Φ(π) is the limit of the state action frequency Φ(π) from equation
(4.5) below, for γ → 1. We use this limit instead of the actual value of Φ(π), since it is very similar
and simplifies the following equations. For now we call Φ(π) the state action frequency of π.

In this chapter we reward an agent at each time step, the reward depending only on the state
of the system and the action of the agent. Given a policy π, we study the expected total reward
and show that it is linear in the state action frequency Φ(π). Thus, we are interested in classifying
the family Φ([0, 1]2) of feasible state action frequencies. We will see in Theorem 4.5.4 below that
the entries of

Φ(π)T =

( s1 s2 s3

a1 η1,1 η2,1 η3,1

a2 η1,2 η2,2 η3,2

)
exhibit algebraic relations coming from exactly two sources. On the one hand, the first two columns
of Φ(π)T are linearly dependent. This relation is a consequence of the states s1 and s2 being
indistinguishable to the parent, which implies that the probability of choosing action a1 in state
s1 is equal to the probability of choosing the action a1 in state s2, independent of the policy of
the agent. We obtain the toric hypersurface X = {0 = η1,1η2,2 − η2,1η1,2}. On the other hand,
the transition matrix α gives rise to a stationarity property of the state-action frequencies for
every state s, encoded by the expression ls =

∑
a ηsa−

∑
s′,a′ ηs′a′αs|s′,a′ . Here the quantity

∑
a ηsa

encodes how frequent the agent is in state s, while
∑

s′,a′ ηs′a′αs|s′,a′ encodes how frequent the agent
transitions from an arbitrary state to the state s.

We can now explicitly write down all polynomial relations that are satisfied by η. The image
ψ([0, 1]2) is the positive part of the intersection X∩L, where X is the toric hypersurface from before,
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and the affine linear space L = {0 = ls1 = ls2 = ls3 = 1−
∑

i,j ηi,j} is defined by polynomials, i.e.

ls1 = η1,2 − η2,2, ls2 = η2,1 + η2,2 − η3,2, ls3 = −η1,2 − η2,1 + η3,2.

We note that both L and X are symmetric under exchanging the states s1 and s2. It may not be
immediate from the transition graph displayed in Figure 4.1, but ultimately the child will be in
state s1 equally as often as in state s2, regardless of the choice of policy.

When computing an optimal policy, we have to decide which interactions between parent and
child we want to penalize or reward. We might want to maximize the time that the baby is happy,
leading to the linear optimization problem with reward function η1,1 + η1,2 on the feasible set
ψ([0, 1]2). The number of critical points on the relative interior ψ((0, 1)2) of the feasible set is
bounded above by the number of complex critical points on the variety X ∩L. For a generic choice
of α this bound is given by Theorem 4.8.1 in terms of the polar degree 2 = δ4(X ), and similar
bounds can be obtained for each boundary component of ψ([0, 1]2). In this example our specific
choice of α is not general and we encounter an infinite family of singular critical points. In fact,
every policy (π1, π2) ∈ [0, 1]× {0} is optimal with objective value 1

3 .

Notation: For a finite set S we denote the free linear space over S by RS = {f : S → R}
and the simplex of probability distributions over S as ∆S =

{
µ ∈ RS :

∑
s µs = 1 and µ ≥ 0

}
.

For s ∈ S we denote the Dirac measure at s with δs ∈ ∆S which corresponds to a unit vector.
The conditional probability polytope consisting of all column-stochastic matrices1 in RO×S is the
product ∆SO = ∆O × · · · ×∆O. We call the elements of this set conditional probability distributions
or Markov kernels from S to O. Given a Markov kernel Q ∈ ∆SO, the conditional probability
Q(o|s) is the entry Qos. Note that a composition of Markov kernels is matrix multiplication. For
a probability distribution p ∈ ∆S and a Markov kernel Q ∈ ∆SO we denote their composition into
a joint probability distribution by p ∗Q ∈ ∆S×O and define it as p ∗Q = diag(p)QT , that is, with
entries (p ∗Q)(s, o) := p(s)Q(o|s). For a subset A ⊆ S we denote the complement S \ A of A in S
by Ac.

4.4 Partially observable Markov decision processes

Partially observable Markov decision processes provide a powerful model to describe sequential
decision making problems with state uncertainty.

Definition 4.4.1. A finite partially observable Markov decision process or shortly POMDP is a
tuple (S,O,A, α, β, r), where S,O, and A are finite sets called the state, observation, and action
space respectively and α ∈ ∆S×AS and β ∈ ∆SO are Markov kernels, which we call the transition
and observation kernel respectively. Furthermore, we consider an instantaneous reward vector
r ∈ RS×A. We denote the cardinalities of S,A, and O by nS , nA, and nO.

From a modeling perspective, α(s′|s, a) is the probability of transitioning from state s to state
s′ upon taking action a, and β(o|s) is the probability of making the observation o if the system is
in state s. The entry rsa corresponds to an instantaneous reward received upon selecting action a
in state s.

1We choose to work with column-stochastic rather than row-stochastic matrices to have Qos = Q(o|s), which
makes composition of two Markov kernels Q1 ◦Q2 equivalent to matrix multiplication Q1Q2.
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Remark 4.4.2. Example 4.3.1 is represented by the POMDP (S,O,A, α, β, r) with state space
S = {s1, s2, s3}, observation space O = {o1, o2}, and action space A = {a1, a2}. The (deterministic)
transitions kernel α is given by the incidence matrix of the directed graph represented in Figure 4.1,
which is the column stochastic matrix presented in equation (4.1). The observation kernel is

β =

( s1 s2 s3

o1 1 1 0
o2 0 0 1

)
∈ ∆SO.

A (memoryless stochastic) policy is a column-stochastic matrix π ∈ ∆OA, mapping from the set
of observations to the set of actions. The entry π(a|o) is the probability with which action a ∈ A
is selected given the observation o ∈ O. A policy can be interpreted as a randomized decision rule
that encodes which action should be taken, based on the current observation. Every observation
based policy π ∈ ∆OA defines a state policy τ = π ◦ β ∈ ∆SA according to

τ(a|s) =
∑
o∈O

π(a|o)β(o|s). (4.2)

A state policy τ ∈ ∆SA defines transition kernels Pτ ∈ ∆S×AS×A and pτ ∈ ∆SS with entries

Pτ (s′, a′|s, a) := α(s′|s, a)τ(a′|s′) and pτ (s′|s) :=
∑
a∈A

α(s′|s, a)τ(a|s), (4.3)

which we call the state-action transition kernel and the state transition kernel associated with τ
and α. Given an initial distribution, the state-action transition kernel Pτ =Pπ◦β defines a Markov
process on the state-action space S ×A.

One is particularly interested in the probability that the Markov process assigns to any given
state-action pair, averaged over time, whereby it is convenient to discount events at larger times t
by weighting them by (1− γ)γt for a discount factor γ ∈ (0, 1). Given an initial state distribution
µ ∈ ∆S and a discount factor γ ∈ (0, 1), one thus defines the (discounted) state-action frequency
associated with policy π ∈ ∆OA as the following element of ∆S×A:

ηπ := (1− γ)
∑
t≥0

γtP tπ◦β(µ ∗ (π ◦ β)) = (1− γ)(I − γPπ◦β)−1(µ ∗ (π ◦ β)), (4.4)

where I is the identity matrix; see [Der70, Kal94]. We denote the parametrization of ηπ by

Φ: ∆OA → ∆S×A
f : π 7→ ηπ = (1− γ)(I − γPπ◦β)−1(µ ∗ (π ◦ β)).

(4.5)

Elementary calculations show that for any given ηπ the conditional probabilities of actions given
states satisfy ηπ(a|s) = (π ◦ β)(a|s). We denote the state-marginal of ηπ by ρπs =

∑
a∈A η

π
sa and

refer to it as the state frequency. By the definition of conditional probability distributions it holds
that

ηπsa = ηπ(a|s)ρπs = (π ◦ β)(a|s)ρπs . (4.6)

Finally, as a measure for the performance of policies, we introduce the reward function2:

R(π) :=
∑

s∈S,a∈A
rsaΦ(π)sa = 〈r,Φ(π)〉S×A. (4.7)

2 More precisely, this is the infinite-horizon expected discounted reward function.
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The reward function R is a widely used criterion to evaluate the performance of a policy. It is equal

to the expected value E
[
(1− γ)

∑
t≥0 γ

tr(st, at)
]

of the (discounted) accumulated instantaneous

rewards along state-action trajectories distributed according to the Markov process with transition
kernel Pπ◦β and initial state-action distribution µ ∗ (π ◦ β). We refer to standard textbooks for an
in-depth discussion [How60, Der70, Put14].

We consider the following reward maximization problem, which is the standard problem in
(discounted) Markov decision processes:

maximize R(π) subject to π ∈ ∆OA. (4.8)

In this work, we focus on deterministic observations β ∈ ∆SO ∩ {0, 1}O×S , where we can
identify the observation kernel with a deterministic mapping gβ : S → O. We denote the fibers of
gβ by So := {s ∈ S : gβ(s) = o} and their cardinality by do = |So|. Note that the fibers So are a
disjoint partition of the states S and hence (do)o∈O is a partition of nS , i.e.,

∑
o∈O do = nS . This

special type of partial observability is known in the literature as state-aggregation.

Example 4.4.3. Consider again Example 4.3.1 from above. The policies of the agent are encoded
as stochastic matrices

π =

( o1 o2

a1 πa1o1 πa1o2
a2 πa2o1 πa2o2

)
∈ ∆OA.

For the given observation kernel β, the state policies (4.2) take the form

τ = π ◦ β =

( s1 s2 s3

a1 πa1o1 πa1o1 πa1o2
a2 πa2o1 πa2o1 πa2o2

)
∈ ∆SA.

The state-action transition kernel (4.3) associated to α and τ is given by

Pτ =



s1, a1 s1, a2 s2, a1 s2, a2 s3, a1 s3, a2

s1, a1 πa1o1 0 0 πa1o1 0 0
s1, a2 πa2o1 0 0 πa2o1 0 0
s2, a1 0 0 0 0 0 πa1o1
s2, a2 0 0 0 0 0 πa2o1
s3, a1 0 πa1o2 πa1o2 0 πa1o2 0
s3, a2 0 πa2o2 πa2o2 0 πa2o2 0

 ∈ ∆S×AS×A,

and the state transition kernel is given by

pτ =


s1 s2 s3

s1 πa1o1 πa2o1 0
s2 0 0 πa2o2
s3 πa2o1 πa1o1 πa1o2

 ∈ ∆SS .

Further, we consider a uniform initial distribution µ ∈ ∆S and a discount factor γ = 1/2. Finally,
let us assume the instantaneous reward vector is r(s, a) = δs1s, which corresponds to a reward of
+1 obtained in state s1. Combining the Neumann series with Cramer’s rule (see [MM22a]) one
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sees that the reward function R is a rational function with the explicit expression R(π) = f(π)
2g(π) −

1
2 ,

where f and g are determinantal polynomials given by

f(π) = 24 det(I − γpπ◦β + µδTs1s)

= π2
a1o1πa2o2 − 2πa1o1πa2o1πa1o2 − 2π2

a2o1πa1o2 − π
2
a2o1πa2o2 + 4πa1o1πa2o1

+ 2πa1o1πa1o2 − 6πa1o1πa2o2 + 4π2
a2o1 − 4πa2o1πa1o2 − 4πa1o1 + 8πa2o1 − 12πa1o2 + 24

(4.9)

and

g(π) = 24 det(I − γpπ◦β)

= 3π2
a1o1πa2o2 − 3π2

a2o1πa2o2 + 6πa1o1πa1o2 − 6πa1o1πa2o2 − 12πa1o1 − 12πa1o2 + 24.
(4.10)

The reward function is to be optimized over the observation policy, that is, we have

maximize R(π) subject to

{
πoa ≥ 0 for all o ∈ O, a ∈ A,∑

a∈A πoa = 1 for all o ∈ O. (4.11)

4.5 The geometry of reward optimization

In this section, we discuss the formulation of the reward optimization problem as a polynomi-
ally constrained linear program from [MM22a]. For deterministic observations we provide a new
description of the feasible state-action frequencies as the intersection of a product of varieties of
rank-one matrices, an affine space, and the simplex (see Theorem 4.5.4).

Clearly, optimizing R(π) = 〈r,Φ(π)〉 over ∆OA is equivalent to the reward maximization
problem in the state-action space:

maximize 〈r, η〉 subject to η ∈ Φ(∆OA). (4.12)

By definition, the feasible set Φ(∆OA) is a subset of the probability simplex ∆S×A. Cramer’s rule
implies that the parametrization Φ is a rational map and hence, by the Tarski-Seidenberg theorem,
the range Φ(∆OA) is semialgebraic. Next we discuss the solution of the implicitization problem
for the parametric set Φ(∆OA), i.e., a representation of this set as the solution set to a list of
polynomial (in)equalities.

The mapping Φ can be seen as a composition Ψ ◦ fβ of a linear and non-linear map, illustrated
in Figure 4.2 for the POMDP of our running example (Examples 4.3.1, 4.4.3, and 4.5.7), with

fβ : ∆OA −→ ∆SA
π 7−→ τ = π ◦ β and

Ψ: ∆SA −→ ∆S×A
τ 7−→ η = (1− γ)(I − γPτ )−1(µ ∗ τ).

We recall the following classic result.

Proposition 4.5.1 (The state-action polytope of Markov decision processes, [Der70]). The image
Ψ(∆SA) is a polytope given by Ψ(∆SA) = L ∩ RS×A≥0 ⊆ ∆S×A , where

L =
{
η ∈ RS×A : `s(η) = 0 for all s ∈ S

}
, (4.13)

and `s(η) :=
∑

a ηsa − γ
∑

s′,a′ ηs′a′α(s|s′, a′)− (1− γ)µs.
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π(a1|o1)

π(a1|o2)

∆OA

π

τ(a1|s1)

τ(a1|s3)

τ(a1|s2)

fβ(∆OA)

∆SA

τ
Φ(∆OA)

Ψ(∆SA)

η
fβ−−−→

linear

Ψ←−−−→
rational

Figure 4.2: Shown is the policy polytope ∆OA (left), the effective policy polytope fβ(∆OA)
within the state policy polytope ∆SA (middle), and the set of feasible state-action fre-
quencies Φ(∆OA) within the state-action polytope Ψ(∆SA) (right). This figure illus-
trates concretely our running example (Examples 4.3.1, 4.4.3, and 4.5.7); Φ(∆OA) is
the nonlinear solution set of the constraints given in equation (4.17) and Ψ(∆SA) is a
three-dimensional polytope that is combinatorially equivalent to the cube ∆SA .

In particular, the set of state-action frequencies Ψ(∆SA) of a fully observable Markov decision
process forms a polytope, referred to as the state-action polytope. The constraints encoded in L
describe a generalized stationarity property of the state-action frequencies, recovering stationarity
in the limit where the discount factor is γ = 1. In order to relate the space of state policies to
state-action frequencies, we make the following assumption.

Assumption 4.5.2 (Positivity). For every s ∈ S and π ∈ ∆OA, we assume that
∑

a ηsa > 0.

This assumption is satisfied, for example, if the system is ergodic or if the initial distribution
µ ∈ ∆S has full support, i.e., has only strictly positive entries. This can be seen by interpreting∑

a ηsa as a weighted average of the time spent in state s when following the policy π. An important
consequence of this assumption is that the state policies τ and the state-action frequencies η are in
one-to-one correspondence, whereby the state policies can easily be computed from the state-action
frequencies by conditioning.

Proposition 4.5.3 ([MM22a]). Under Assumption 4.5.2, the mapping Ψ: ∆SA → Ψ(∆SA) is rational
and bijective with rational inverse given by conditioning

Γ: Ψ(∆SA) −→ ∆SA

η 7−→ τ, where τas =
ηsa∑
a′ ηsa′

.

The mapping Ψ extends to a rational bijection with rational inverse between open dense subsets of
the affine span affine(∆SA) = {τ ∈ RS×A :

∑
a τas = 1 for s ∈ S} of ∆SA and L given in (4.13).

The function Ψ is defined everywhere on ∆SA and bijectively identifies the defining inequalities
of the polytope fβ(∆OA) within ∆SA with the defining inequalities of Φ(∆OA) within Ψ(∆SA) via the
pullback along Γ. This relates the geometry of Φ(∆OA) and fβ(∆OA). The defining inequalities of
fβ(∆OA) can be computed algorithmically, see e.g., [JKM04]. As we demonstrate in what follows,
for deterministic observations the defining inequalities can be given in closed form. In particular,
we show the following:
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Theorem 4.5.4 (Feasible state-action frequencies). Let Assumption 4.5.2 hold. For deterministic
observation β, the set of feasible state-action frequencies Φ(∆OA) is the intersection L ∩ X ∩∆S×A
of the linear space L defined in (4.13), the product of real determinantal varieties

X =
{
η ∈ RS×A : ηsaηs′a′ − ηsa′ηs′a = 0 ∀a, a′ ∈ A and s, s′ ∈ S with gβ(s) = gβ(s′)

}
, (4.14)

and the probability simplex ∆S×A. In particular, the only inequalities are of the form η ≥ 0.

We call L ∩ X the state aggregation variety. Note that X is determined by the condition that
for every observation o the do × nA submatrix (ηsa)s∈So, a∈A of η, consisting of all entries ηsa with
β(s) = o, has rank one. In particular, the projective variety associated to X is a join of Segre
varieties.

Proof of Theorem 4.5.4. Proposition 4.5.1 provides a description of the polytope Ψ(∆SA) as the in-
tersection L∩∆S×A so we are left with finding the defining equations and inequalities for Ψ(fβ(∆OA))
in Ψ(∆SA). To do this, observe that the polytope fβ(∆OA) consists of those elements τ ∈ ∆SA satisfy-
ing the linear equations τas− τas′ for all a ∈ A, s, s′ ∈ S such that gβ(s) = gβ(s′). In particular, the
description of fβ(∆OA) in ∆SA does not entail any inequalities. In other words, the only requirement
is that all columns of τ indexed by states with equal observations coincide. Fix an action ao ∈ A
and a state so ∈ So for each observation o ∈ O. Then the non-redundant defining equalities of
fβ(∆OA) are given by

losa(τ) := τas − τaso = 0,

for all observations o ∈ O, actions a ∈ A \ {ao}, and states in the fiber s ∈ So \ {so}. These
equations determine the range of fβ as a function RA×O → RA×S (corresponding to the set U in
[MM22a, Theorem 12]). Using the positivity Assumption 4.5.2 we can apply the pullback Γ∗ of the
conditioning map Γ to the linear functions losa and obtain the rational equations

(Γ∗losa)(η) = losa(Γ(η)) = ηsa

(∑
a′∈A

ηsa′

)−1

− ηsoa

(∑
a′∈A

ηsoa′

)−1

= 0, (4.15)

which we rephrase as the vanishing of the polynomials

posa(η) := ηsa
∑
a′∈A

ηsoa′ − ηsoa
∑
a′∈A

ηsa′ =
∑

a′∈A\{a}

(ηsaηsoa′ − ηsoaηsa′). (4.16)

These are defining polynomial equations of Ψ(fβ(∆OA)) in Ψ(∆SA). Let now W be the variety
determined by the equations (4.15). It remains to show L∩X ∩∆S×A = L∩W ∩∆S×A. Since posa
is a linear combination of 2×2 minors, we have the inclusion X ⊆ W. On the other hand, equation
(4.15) implies the linear dependence of the two vectors

(ηsa)a, (ηsoa)a ∈ RA

for every observation o and state s ∈ So. Consequently, every 2 × 2 minor in the definition of X
vanishes on L ∩W ∩∆S×A. This shows the desired inclusion

L ∩W ∩∆S×A ⊆ L ∩ X ∩∆S×A,

which finishes the proof.
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Hence by Theorem 4.5.4, in the case of a deterministic observation kernel, the set Φ(∆OA) is
described semi-algebraically by linear inequalities and equalities which are either linear or 2 × 2
principal minors. This is in contrast to the case of general observation kernels, where nonlinear
defining inequalities appear and the polynomial constraints might be of higher degree (see [MM22a,
Theorem 16]). Since all defining equalities of X are binomial, it is a toric variety. The following
monomial parametrization of X can be inferred from the discussion of the family of state-frequencies
and equation (4.6):

RS × RA×O −→ X ⊆ RS×A

(ρ, π) 7−→ η, where η(s, a) = π(a|gβ(s))ρ(s).

The subsequent characterization of the set of feasible state-action frequencies with fewer equations
will be useful later.

Corollary 4.5.5 (Alternative characterization of feasible state-action frequencies). For a deter-
ministic observation β, fix an arbitrary action ao ∈ A and an arbitrary state so ∈ So for every
o ∈ O. The set of feasible state-action frequencies Φ(∆OA) can be described as the intersection
L ∩ Y ∩∆S×A, where

Y =
{
η ∈ RS×A : posa(η) = 0 for all o ∈ O, a ∈ A \ {ao}, s ∈ So \ {so}

}
.

The polynomials posa are given in (4.16), and Y is a complete intersection of their hypersurfaces.

Proof. This follows directly from the proof of Theorem 4.5.4.

Remark 4.5.6. We clarify that the description of Y as a complete intersection in general does not
hold for the state aggregation variety X ∩ L. The variety Y might have additional components,
possibly of higher dimension than the state aggreggation variety. By Theorem 4.5.4 these are
disjoint from the feasible set Φ(∆OA) . The description of Y as a complete intersection will be
exploited in the next sections where we employ numerical methods to compute critical points by
solving Lagrange and KKT equations.

Example 4.5.7. We continue Example 4.3.1 and 4.4.3 from above. The defining equalities of
Φ(∆OA), described in (4.13) and Theorem 4.5.4, take the form

L = {η ∈ R3×2 : 3ηs1a1 + 6ηs1a2 − 3ηs2a2 − 1 = 0, 6ηs2a1 + 6ηs2a2 − 3ηs3a2 − 1 = 0,

3ηs3a1 + 6ηs3a2 − 3ηs1a2 − 3ηs2a1 − 1 = 0}

and
X =

{
η ∈ R3×2 : ηs1a1ηs2a2 − ηs1a2ηs2a1 = 0

}
,

and the defining inequalities are ηsa ≥ 0. Thus, the reward maximization problem (4.12) is

maximize ηs1a1 + ηs1a2 subject to


3ηs1a1 + 6ηs1a2 − 3ηs2a2 − 1 = 0
6ηs2a1 + 6ηs2a2 − 3ηs3a2 − 1 = 0

3ηs3a1 + 6ηs3a2 − 3ηs1a2 − 3ηs2a1 − 1 = 0
ηs1a1ηs2a2 − ηs1a2ηs2a1 = 0

ηs1a1 , ηs1a2 , ηs2a1 , ηs2a2 , ηs3a1 , ηs3a2 ≥ 0.

(4.17)

The feasible set of this optimization problem is shown on the right in Figure 4.2. Comparing this
to the optimization problem over the policy polytope (4.11) with objective function (4.9), now the
constraints are more complex and nonlinear but the objective is linear.
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4.6 Combinatorial and algebraic complexity of the problem

In this section, we study the number of critical points of the reward optimization problem in the case
of deterministic observations. A similar approach was pursued in [MM22a] for the case of invertible
observation matrix β, in which case there are linear equations and polynomial inequalities.

The description of Φ(∆OA) obtained in Corollary 4.5.5 allows to reformulate the reward maxi-
mization problem (4.12) as the following constrained polynomial optimization problem:

maximize 〈r, η〉 subject to


`s(η) = 0 for s ∈ S,
posa(η) = 0 for o ∈ O, a ∈ A \ {ao}, s ∈ So \ {so},

ηsa ≥ 0 for s ∈ S, a ∈ A,
(4.18)

where the linear constraints `s are given in Proposition 4.5.1, the polynomial constraints posa(η)
are provided in (4.16) taking a fixed action ao ∈ A and a fixed state so ∈ So for each observation
o ∈ O, and the inequality constraints simply ensure the entries of η being nonnegative. Observe
that problem (4.18) is in fact a quadratically constrained linear program.

We bound the number of critical points individually for each boundary component of the feasible
set. A boundary component consists of all feasible points for which a given subset of the inequality
constraints are active. The boundary components of the feasible set Φ(∆OA) are in one-to-one
correspondence with the faces of ∆OA according to

{
π ∈ ∆OA : π(a|o) = 0 ∀a ∈ Ao, o ∈ O

}
←→

{
η ∈ Φ(∆OA) : ηsa = 0 for a ∈ Agβ(s)

}
, (4.19)

where Ao is a proper subset of A for every o ∈ O, and gβ(s) is the observation associated with state
s. In particular, there is a boundary component associated to each tuple (Ao)o∈O with Ao ( A,
o ∈ O.

We point out the following result, which allows us to ignore high-dimensional boundary com-
ponents when searching for a maximizer of the reward. Recall that for an observation o ∈ O, the
cardinalities of the fibers of gβ are denoted by do = |So|.

Theorem 4.6.1 (Existence of maximizers in low dimensional faces, [MR17]). There exist Ao ( A
with |Aco| ≤ do, o ∈ O, such that the set B described in (4.20) contains a (globally optimal) solution
of the problem (4.18).

Remark 4.6.2. One approach to solving (4.18) is to solve the critical equations over every bound-
ary component and then selecting the critical point with the highest objective value. According to
Theorem 4.6.1 there is a lower-dimensional boundary component that contains a global maximizer.
This implies that, instead of considering the critical points in all (2nA−1)nO boundary components,
it is enough to consider those in the boundary components with Ao ( A satisfying |Ao| ≥ nA− do.
This reduces the number of boundary components that need to be checked to

∏
o∈O

 nA−1∑
ko=max(nA−do,0)

(
nA
ko

) ,

which we call relevant boundary components. Note that this number only depends on the number
of actions nA and do (the cardinality of the fibers of gβ).
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Bounds via algebraic degrees of polynomial optimization

With the description of the boundary components of the feasible set at hand, we can deduce upper
bounds on the number of critical points over each of them based on the degrees of the defining
equations and the degree of the objective function.

Theorem 4.6.3 (Bound on the algebraic degree). Consider a POMDP with deterministic ob-
servations. Fix Ao ( A for every o ∈ O and set n := nSnA − nS −

∑
o do|Ao| and m :=∑

o(do − 1)(|Aco| − 1), where we assume n is not zero. Then the number of isolated critical points
of the linear function η 7→ 〈r, η〉 over

B = {η ∈ L ∩ X : ηsa = 0 for a ∈ Agβ(s)} (4.20)

is upper bounded by 2m
(
n−1
m−1

)
.

Proof. We now write the Zariski closure of B as a complete intersection of m quadratic equations
on an n−dimensional affine-linear space. Recall from Corollary 4.5.5 that Φ(∆OA) is defined in
RS×A as an intersection of nS linear equations,

∑
o(do−1)(nA−1) quadratic equations of the form

(4.16), and the linear inequalities η ≥ 0. We start by showing that the family of linear equations
`s(η) = 0, s ∈ S and ηsa = 0, a ∈ Ao, s ∈ So, o ∈ O is linearly independent for any choice of
Ao ( A, o ∈ O. For this we first note that the linear equations `s(η) = 0, s ∈ S define the space
L ⊆ RS×A of dimension dim(L) = dim(affine(∆SA)) = nS(nA − 1) (see Proposition 4.5.3), which
implies their linear independence. It now suffices to see that the restrictions of ηsa to L are linearly
independent. Note that the pullback of the equations ηsa = 0 restricted to L along the birational
map Ψ are the equations τas = 0, a ∈ Ao, s ∈ So, which are linearly independent on affine(∆SA).

On the set B given in (4.20) there are
∑

o do|Ao| active linear inequalities with Ao ( A for each
o ∈ O, and hence B is contained in an affine space of dimension

n = nSnA − nS −
∑
o

do|Ao|.

Further, given these linear equations, the quadratic equations

posa(η) = ηsa
∑
a′∈A

ηsoa′ − ηsoa
∑
a′∈A

ηsa′ = 0

are redundant for all a ∈ Ao, s ∈ So. By choosing ao ∈ Aco in Corollary 4.5.5 for every o ∈ O there
remain nA− |Ao| − 1 non-redundant quadratic equalities for every s ∈ So \ {so}. Therefore, we get
m =

∑
o(do − 1)(|Aco| − 1) non-redundant quadratic equalities. By Theorem 2.2 and Corollary 2.5

in [NR09] the algebraic degree for the optimization of the linear function r ∈ RS×A over an n-
dimensional affine space subject to m non-redundant quadratic constraints is upper bounded by
2m
(
n−1
m−1

)
.

Remark 4.6.4. We will observe in Example 4.8.3 below that the bounds from Theorem 4.6.3 are
weaker than the bounds obtained in Chapter 2. They are however a lot easier to evaluate, and
based on a different method we will be able to obtain sharp bounds in some instances later, with
Theorem 4.8.1.

With Theorem 4.6.3 we can provide upper bounds for the number of critical points of the
optimization problem (4.18). Indeed, the number of critical points over the interior

{η ∈ L ∩ X : ηsa = 0 for all a ∈ Agβ(s), ηsa > 0 otherwise} (4.21)

71



of a boundary component is clearly upper bounded by the number of critical points over B defined
in (4.20). This bound over the individual boundary components can be summed to obtain an
upper bound on the number of critical points of the polynomial optimization problem (4.18) (see
also [NR09]). Note that the Zariski closure of the interior of a boundary component defined in (4.21)
is contained in B but might be a strict subset. In fact, by Remark 4.5.6, Theorem 4.6.3 can fail to
give tight bounds on the number of (complex) critical points in those instances where B is not a
complete intersection.

Remark 4.6.5 (Tighter bounds via polar degrees). A more satisfactory approach is to compute
polar degrees of the state aggregation variety X ∩ L. This approach yields tighter bounds, as
demonstrated in the special case of a blind controller with two actions, i.e., a system with one
observation and two actions in [MM22a]. The authors obtain an upper bound linear in nS compared
to the exponential upper bound of nS · 2nS−1 + 2 that follows from Theorem 4.6.3. We address this
approach in Section 4.8 in full generality, and give a description of the number of critical points
in Theorem 4.8.5 under some generality assumption. We compare the bounds obtained from polar
degrees to the previous results from this chapter in Example 4.8.4 below.

4.6.1 Evaluation of the bounds

In Table 4.1 we present the upper bounds on the number of critical points for problems of different
sizes. We compare the bound on the total number of critical points obtained by iterating Theo-
rem 4.6.3 over all boundary components and the one iterating only over the relevant components
described in Theorem 4.6.1. In addition, we report the total and relevant number of boundary
components discussed in Remark 4.6.2. Both the number of boundary components and the upper
bound on the number of critical points, depend on nS , nA, and the tuple (do)o∈O. The two extreme
cases for the tuple (do)o∈O, namely (nS) and (1, . . . , 1), correspond to a blind controller, i.e., all
states map to the same observation, and the fully observable case, i.e., states and observations are
in one-to-one correspondence, respectively. The bounds are independent of the specific α, so long
as Assumption 4.5.2 is satisfied.

In these examples, we observe that restricting to the relevant boundary components significantly
reduces the upper bound. This is reflected in the last two columns in Table 4.1. The difference is
most notable when the fibers of gβ have a small cardinality, i.e., only few states lead to the same
observation. In the fully observable case, the relevant boundary components correspond to the
vertices of ∆OA. This is consistent with the fact that in the fully observable case the feasible set
Φ(∆OA) is a polytope [Der70] and hence the optimization problem (4.18) is a linear program, for
which the solutions are attained at the vertices. On the other hand, in the case of a blind controller
(with a single observation o), all boundary components are relevant since do = nS .

4.7 Numerical methods for the optimization of decision rules

In POMDPs, reward optimization over the set of memoryless stochastic policies (4.8) is known to
be hard in theory (NP-hard [VLB12]) and also difficult in practice as the reward function R is
nonconvex and has sub-optimal strict local optima [PLT11, BR19]. In this section, we discuss how
the geometric description of reward optimization facilitates computational approaches based on
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nS nA
partitions of nS :

(do)o∈O

Number of boundary com-
ponents

Bound on number of critical
points

total relevant total relevant

3 2

(3) 3 3 10 10

(2, 1) 9 6 10 8

(1, 1, 1) 27 8 8 8

4 3

(4) 7 7 1419 1419

(3, 1) 49 21 2237 561

(2, 2) 49 36 1265 153

(2, 1, 1) 343 54 1189 81

(1, 1, 1, 1) 2401 81 81 81

5 3

(5) 7 7 9411 9411

(4, 1) 49 21 23745 4257

(3, 2) 49 42 13431 4371

(3, 1, 1) 343 63 24363 1683

(2, 2, 1) 343 108 12159 459

(2, 1, 1, 1) 2401 162 9195 243

(1, 1, 1, 1, 1) 16807 243 243 243

Table 4.1: Listed are the number of boundary components and the upper bound on the number of critical points
from Theorem 4.6.3 both over all boundary components and over the subset of relevant boundary components from
Theorem 4.6.1 for problems of different size.

numerical algebra. We derive polynomial systems for the critical points, globally from the Karush-
Kuhn-Tucker (KKT) conditions, and separately for each boundary component of Φ(∆OA) from the
Lagrangian criterion. For different choices of nS , nA, and generic data (i.e., generic α, µ, and r),
we compute the complex and real solutions of the KKT and Lagrangian systems, and we compare
the number of solutions with the theoretical upper bounds established in Section 4.6. Finally, we
compare these approaches with other popular methods from constrained optimization: the interior
point solver Ipopt and convex relaxations via the moment-SOS approach.

4.7.1 Critical equations and computation

The KKT critical point equations A standard approach for constrained optimization prob-
lems are the KKT conditions [KT51], which provide necessary conditions of stationary points under
certain regularity conditions; see, e.g., [Aba67, Ber97, BSS06]. If both the constraints and objective
function are polynomial, the KKT conditions form a polynomial system, which can be solved using
various numerical algebraic methods.

Applied to our problem, the KKT conditions reduce to the following polynomial system in
η ∈ RS×A≥0 with multipliers λ ∈ RS , νosa ∈ R, κ ∈ RS×A≥0 :

Primal feasibility: `s(η) = 0 for s ∈ S,
posa(η) = 0 for o ∈ O, a ∈ A \ {ao}, s ∈ So \ {so},

Complementary slackness: κsoaηsoa = 0 for all so, a,

Stationarity: r +
∑
s

λs∇`s(η) +
∑
o,s,a

νosa∇posa(η) + κ = 0,

(4.22)

where ao ∈ A and so ∈ So for every o ∈ O are fixed arbitrarily. Here we have included the primal
feasibility ηsa ≥ 0 for s ∈ S, a ∈ A and the dual feasibility κsa ≥ 0 for s ∈ S, a ∈ A in the definition
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of the search space for η and κ.
The number of linear constraints `s is nS , while the number of polynomial constraints posa is

(nA − 1)
∑

o∈O(do − 1) = (nA − 1)(nS − nO). Due to the symmetry of the effective policies, there
are only nOnA inequalities, ηsoa ≥ 0 for each a ∈ A, o ∈ O. Hence the dimension of the square
KKT system (4.22) is

nSnA + nS + (nA − 1)(nS − nO) + nOnA = 2nSnA + nO.

In this setting, we can verify that the linear independence constraint qualification is satisfied.
Given an element η∗ in the feasible set Φ(∆OA), it suffices to verify the linear independence of the
gradients of the active inequality constraint functions and the equality constraint functions at η∗.
Notice that under the pullback along the birational morphism Γ = Ψ−1 the equality constraints
in (4.16) are identified with the affine-linear functions losa defined in the proof of Theorem 4.5.4.
Checking the linear independence of their gradients can be done by counting the dimension of the
faces.

The Lagrange critical point equations over boundary components Alternatively to solv-
ing the KKT system, one can compute the critical equations given by the Lagrange criterion over
every boundary component individually. If there are no inequality constraints, the KKT equations
specialize to the Lagrange multiplier equations. Consider a boundary component B in (4.20) for a
choice of Ao ( A for every o ∈ O, and consider the optimization problem over B. This amounts to
setting η(s, a) = 0 for a ∈ Ao whenever gβ(s) = o, o ∈ O, which reduces optimization to a subspace
of RS×A. We denote the new primal variables by η̂. Similarly, we denote the restriction of `s and
posa to this space by ˆ̀

s and p̂osa and the projection of r onto this space (i.e., the vector obtained by
dropping the indices which are set to zero in η) by r̂. In the lower dimensional variables η̂ for a
given B the Lagrange system becomes

Feasibility: ˆ̀
s(η̂) = 0 for s ∈ S,
p̂osa(η̂) = 0 for o ∈ O, a ∈ A \ {ao}, s ∈ So \ {so},

Stationarity: r̂ +
∑
s

λs∇ˆ̀
s(η̂) +

∑
o,s,a

νosa∇p̂osa(η̂) = 0,
(4.23)

where ao ∈ Aco and so ∈ So are fixed arbitrarily for every o ∈ O. The dimension of the primal
variable η̂ is nSnA −

∑
o do|Ao|, the dimension of the Lagrange multipliers λ is nS and of νosa is∑

o(do − 1)(|Aco| − 1) (see also the proof of Theorem 4.6.3). Overall, the Lagrange system (4.23) is
a square polynomial system of dimension

2nSnA − (nA − 1)nO −
∑
o

(2do − 1)|Ao|.

Remark 4.7.1 (Lagrange vs KKT system). It is easy to see that every real solution of the KKT
system satisfying the primal and dual inequality constraints η ≥ 0, κ ≥ 0 is a solution of the
Lagrange system over a boundary component, namely the boundary component defined by the
zeros of η; see Figure 4.3 for an illustrated example of this situation. When solving the KKT
system (4.22), usually one solves the system of equations without the nonnegativity conditions
η ≥ 0 and κ ≥ 0 and then selects the nonnegative solutions. Note that every solution of the
Lagrange system over a boundary component appears as the solution of the KKT system without
the nonnegativity constraints. Hence, solving the KKT system gives at least as many solutions as
solving the Lagrange system over every boundary component.
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Figure 4.3: Schematic illustration of the feasible region (gray) and objective gradient (arrow) of a polynomially
constrained linear program showing (i) the solutions of the KKT system checking only primal (η ≥ 0) inequality
constraints (red pentagons and green hexagons); and checking primal (η ≥ 0) and dual (κ ≥ 0) inequality constraints
(red pentagons), (ii) the solutions of the KKT system without checking inequalities (all points ), (iii) the positive
(η ≥ 0) solutions of the Lagrange systems over all boundary components (red pentagons and green hexagons), (iv) all
solutions of the Lagrange systems over all boundary components (red pentagons, green hexagons, and black circles).

4.7.2 Experiments

Description of the experiments We test our computational approach on random POMDPs
of different sizes. To this end, we first specify the number of states nS , the number of actions
nA, and the number of states aggregated in each observation (do)o∈O with

∑
o do = nS . For each

specification of these values, we generate 20 random problems as follows. We sample the initial
state distribution µ and the transition probabilities α(·|s, a), (s, a) ∈ S × A from a symmetric
Dirichlet distribution, and sample the instantaneous reward vector r ∈ RS×A from a standard
Gaussian distribution. We use the same random data for both approaches, KKT and Lagrange
over boundary components.

Computation The optimization problem (4.18) can be solved using several methods:

• First, we use the numerical algebra package HomotopyContinuation.jl [BT18] to solve the KKT
system (4.22) and the Lagrange system (4.23) of each boundary component. This automatically
certifies the results, meaning that for every returned solution, a unique true solution is guaranteed
in a small neighborhood. From the returned solutions to the critical equations, we then just need
to select the real ones that satisfy the primal inequality constraints ηs,a ≥ 0, and among them
the one that has the maximum objective value.

• Alternatively, we solve a convex relaxation of the polynomial optimization problem (4.18).
Namely, we relax the problem to a semidefinite program (SDP) via the moment-SOS-approach
that is implemented in the freeware GloptiPoly3 [HLL09], and solve the SDPs using the nu-
merical solver Mosek; see [DA21] for details. We note that GloptiPoly3 builds upon a hierarchy
of moment/SOS programs (also called Lasserre hierarchy), which allows to approximate the op-
timal value arbitrarily close, and can be used to test optimality and extract global optimizers
[HL05, Nie11]. We use this key feature to check if our methods reach global optimality.
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• We may also solve the constrained optimization problem (4.18) using the interior point solver
Ipopt [WB06], which is a local optimization method for large-scale nonlinear optimization, an
approach recently pursued in [MM22b].

nS nA (do)o∈O
KKT Lagrange (all) Lagrange (relevant)

complex real positive complex real positive complex real positive

3 2

(3) 6±0 4.4±1.2 2.1±0.3 6±0 4.4±1.2 2.1±0.3 6±0 4.4±1.2 2.1±0.3

(2,1) 12±0 10.1±1.9 4.25±0.44 10±0 8.2±1.9 4.25±0.44 8±0 6.7±1.6 4.25±0.44

(1,1,1) 20±0 20±0 8±0 8±0 8±0 8±0 8±0 8±0 8±0

4 3

(4) 45±0 17.1±4.3 4.3±1.3 45±0 17.1±4.3 4.3±1.3 45±0 17.1±4.3 4.3±1.3

(3,1) 150±0 79±11 11±1.9 129±0 68.7±9.7 11±1.9 81±0 41.6±8.5 10.9±1.8

(2,2) 281.6±0.75 154±16 13.9±4.7 263±0 136±16 13.9±4.7 153±0 89±10 13.65±4.3

(2,1,1) 381.2±0.7 292±23 31.5±4.3 216±0 168±16 31.5±4.3 81±0 68±11 30.9±4.0

(1,1,1,1) 495±0 495±0 81±0 81±0 81±0 81±0 81±0 81±0 81±0

5 3

(5) 71±0 21.4±6 3.7±0.98 71±0 21.4±6 3.7±0.98 71±0 21.4±6 3.7±0.98

(3,2) 637.95±0.76 219±28 12.60±2.9 626±0 213±29 12.6±2.9 477±0 171±24 12.6±2.9

(4,1) 269.85±0.49 99±20 11.9±3.3 234±0 87±18 11.9±3.3 144±0 52±13 11.55±2.6

(3,1,1) 881.95±0.22 436±68 36±10 558±0 285±47 36±10 243±0 117±20 35.3±9.2

(2,2,1) 1717.3±2.5 890±49 35.6±5.3 1260±0 624±56 36.5±7.1 459±0 244±25 35.7±6.6

(2,1,1,1) 2269.9±3.9 1712±142 89±12 810±0 624±74 89.3±12.3 243±0 195±37 88.1±9.5

(1,1,1,1,1) 3002.9±0.31 3002.9±0.3 243±0 243±0 243±0 243±0 243±0 243±0 243±0

Table 4.2: Mean and standard deviation of the number of solutions of the KKT system (4.22), the Lagrange
system (4.23) over all boundary components, and the Lagrange system over the relevant boundary components, for
20 random POMDPs with the indicated number of states nS , actions nA, and state-aggregation partition (do)o∈O.
In our setting, positive solutions are feasible solutions.

Discussion of the experimental results In this section, we discuss the experimental results
on the number of solutions obtained by solving the KKT and Lagrange systems introduced above.
In Table 4.2, we report the average and standard deviation of the number of complex, real, and
positive solutions returned in each case. Note that in our setting, positive solutions (i.e., solutions
satisfying η ≥ 0) are (primal) feasible solutions. We also compare these methods’ performance and
computational times with convex relaxations and interior point methods.

Following the discussion in Remark 4.7.1, we start by comparing the number of solutions of
the KKT and the Lagrange systems. In Table 4.2 we see that the KKT system has at least as
many complex solutions as the Lagrange systems over all boundary components. This is consistent
with our previous discussion, since, as we have pointed out, any solution of the Lagrange system
over a boundary component is a solution of KKT. Moreover, KKT and Lagrange over all boundary
components generally have the same number of positive solutions (see Remark 4.7.1 and Figure
4.3).

The difference between the number of complex, real, and positive solutions is also worth noting.
Table 4.2 reveals a drop between the number of complex solutions and the number of real and
positive solutions of the three types of systems. However, we find an exception to this in the
Lagrange system for fully observable systems (do = (1, . . . , 1)), where the number of complex, real,
and positive solutions coincide. Indeed, in this case all boundary components are affine spaces, so
only the zero-dimensional boundary components have a solution, and these correspond precisely to
the nnSA vertices of the feasible set.
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We also observe that the number of complex solutions has a much smaller variance than the
number of real or positive ones. This is expected, since choosing the coefficients of polynomial
systems randomly gives the same number of complex solutions with probability one. In fact, the
number of complex solutions for the Lagrange system has no variance across the different random
parameters. Still, we see a small variance in the number of complex KKT solutions, which we at-
tribute to numerical instability: this can prevent the software package HomotopyContinuation.jl

from finding all solutions to the KKT system. In contrast to the complex case, the variance on the
number of real and positive solutions is not due to numerical errors. This is a typical phenomenon
in polynomial system solving and is one of the possible limitations of classic algebraic methods
when one wants to estimate the number of real solutions of a system.

In the following we compare the experimental results presented in Table 4.2 with the theoretical
upper bounds shown in Table 4.1 and highlight two particular facts. First notice that in most cases
the theoretical bound is significantly larger than the number of solutions of the Lagrange system.
Moreover, this gap becomes particularly pronounced for problems where the fibers of gβ are large.
This indicates that there is a discrepancy between the theoretical bounds and the algebraic degree
of the optimization problem. Indeed, our bounds are based on the theory for generic polynomials.
Hence, we do not expect that they provide a tight estimate of the algebraic degree for the particular
polynomials we are dealing with. Here we also observe a particular behavior in the case of fully
observable systems where the number of critical points of the Lagrange systems agrees with our
bounds. On the other hand, we see that in some cases the number of solutions of KKT is larger
than the bound, which agrees with our discussion on solutions of KKT and Lagrange systems in
Remark 4.7.1.

In addition to analyzing the number of solutions of the KKT and Lagrange systems, we are
interested in comparing the different solution methods for the optimization problem. Therefore, we
compare the optimal solution found by solving these systems with HomotopyContinuation.jl with
the one found by Ipopt and GloptiPoly3. Although HomotopyContinuation.jl is not guaranteed
to find all solutions to the KKT and Lagrange systems, we observe that this approach yields a
reward that is at least as high as the one obtained by the interior point method Ipopt and, in a few
instances, strictly higher. In fact, solving the optimization problem with GloptiPoly3 returns a
certificate for the optimality of the result, which in all computed instances coincides with the optimal
value obtained by solving the KKT and Lagrange systems with HomotopyContinuation.jl. That
is, GloptiPoly3 offers numerical evidence that they always provide globally optimal solutions. In
all computed instances using GloptiPoly3, the optimal value of the optimization problem was
already attained at the first-order relaxation of the Lasserre hierarchy [Las01]. We conjecture
that objective value exactness for the first order relaxation of (4.18) holds with high probability for
generic input data. Since the size of the SDP depends very sensitively on the order of the relaxation,
this conjecture would remedy one of the major drawbacks of the SDP relaxation method. In more
detail, the t-th order relaxation for both, the moment and the SOS relaxation of a polynomial
optimization problem, can be computed via an SDP of size

(
n+t
t

)
, where n is the number of variables

of the involved polynomials.
As described in [Nie11], finite convergence of the Lasserre hierarchy, i.e., convergence after

finitely many relaxation steps, is closely related to certifying the flat truncation property. In fact,
finite convergence holds generically [Nie14]. However, studying exactness properties of the SOS
and the moment relaxation is still an ongoing topic of current research, see e.g. [BM22].

Finally, in Table 4.3 we report the computation times of the different approaches. The KKT and
Lagrange systems as well as Ipopt were computed on a server with a 2x 32-Core AMD Epyc 7601 at
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2.2 GHz and 1024 GB RAM, whereas the SDP relaxation was computed on a Intel(R) Core(TM)
i7-8550U CPU with 4 cores at 1.8 GHz and 16GB RAM. Solving the Lagrange equations only
over the relevant boundary components was up to two orders of magnitude faster than solving
them over all boundary components. The improvements are more pronounced when gβ has small
fibers in which we can exclude more faces by means of Theorem 4.6.1; see also Table 4.1. The
computation times for the solution of the KKT system are in the same order to magnitude as the
computation time of the solution of the Lagrange systems over all boundary components. KKT
is slightly faster when gβ has small fibers and slightly slower when gβ has large fibers. The SDP
approach is several orders of magnitude faster compared to the solution of the KKT and Lagrange
systems with the gap becoming more pronounced for problems of increasing size. The interior point
method Ipopt is again several orders of magnitude faster. Ipopt and SDP return one candidate
solution, whereas homotopy continuation attempts to return all critical points. Note however
that in contrast to the SDP relaxation the interior point method only guarantees locally optimal
solutions. In our experiments we consistently observed that Ipopt yields less accurate solutions
and sometimes converges to suboptimal points. Indeed, the maximum euclidean difference of the
reward obtained by Ipopt and SDP is 9.68× 10−2, whereas the maximum difference between either
of KKT and Lagrange methods and SDP is 2.98× 10−7.

Partitions

of nS
Ipopt SDP KKT

Lagrange

(all)

Lagrange

(relevant)

nS = 3, nA = 2

(3) 0.01 0.213 1.575 0.046 1.175

(2,1) 0.009 0.168 1.551 3.563 2.757

(1,1,1) 0.006 0.171 0.114 0.119 0.03

nS = 4, nA = 3

(4) 0.011 1.167 19.885 7.642 10.407

(3,1) 0.01 1.114 76.071 43.759 22.17

(2,2) 0.011 1.278 173.644 114.208 48.52

(2,1,1) 0.009 1.292 79.775 191.394 27.004

(1,1,1,1) 0.007 1.184 13.82 32.637 0.693

nS = 5, nA = 3

(5) 0.011 7.394 62.321 31.257 31.501

(3,2) 0.01 6.338 1768.722 509.877 259.054

(4,1) 0.011 7.256 307.524 163.88 69.5

(3,1,1) 0.01 6.608 895.701 704.813 91.901

(2,2,1) 0.011 6.078 2831.482 2175.098 313.557

(2,1,1,1) 0.009 6.22 899.981 2058.912 188.536

(1,1,1,1,1) 0.006 5.159 172.621 319.165 3.667

Table 4.3: Average run times for the different approaches reported in seconds. KKT and Lagrange are computed
with homotopy continuation.

4.8 Polar degrees of state aggregation varieties

In this section, we review the reward optimization problem (4.12) from the perspective of algebraic
geometry. The main result of this section, Theorem 4.8.1, bounds the algebraic complexity of
this optimization problem. Contrary to Theorem 4.6.3, this bound is tight under some genericity
conditions. We compare the results to each other and to the results from Chapter 2 in Example 4.8.4.

We start by fixing a POMDP with deterministic observations and remind the reader of the
notation. Let S,A,O denote the sets of states and actions and let the map β : S −→ O denote the
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(deterministic) observation kernel and let α ∈ RA×S×A denote the transition kernel. We denote
0 < γ ≤ 1 the discount factor and µ ∈ ∆S the starting distribution. Let X be the associated
determinantal variety from equation (4.14):

X =
{
η ∈ CS×A : ηsaηs′a′ − ηsa′ηs′a = 0 ∀a, a′ ∈ A and s, s′ ∈ S with gβ(s) = gβ(s′)

}
and let further L denote the affine linear space

L =
{
η ∈ RS×A : `s(η) = 0 for all s ∈ S

}
, `s(η) :=

∑
a

ηsa − γ
∑
s′,a′

ηs′a′α(s|s′, a′)− (1− γ)µs

from Equation (4.13). In view of Theorem 4.5.4 our aim is to study the following optimization
problem:

maximize 〈r, η〉 subject to η ∈ X ∩ L ∩ RS×A≥0 .

Analogous to the discussion from Section 4.7, in this section we study the number of critical points
individually for each boundary component of the feasible set. As we observed at the beginning of
Section 4.6, every boundary component B is the intersection of the feasible set with an orthant

Orth(B) = {η : ηsa = 0 for a ∈ Agβ(s)}, (4.24)

where for every observation o, Ao ( A is a proper subset of the set of actions. The boundary
component B constitutes the state action frequencies of those policies π that, given an observation
o, never choose any action from the set Ao.

Under the assumption that the complex linear space L∩Orth(B) is in general position relative
to X we can attach an algebraic degree to the optimization problem. This is done by our main
result in this section, namely Theorem 4.8.5. In order to state it, we need the following notation.

Let m1, m2, r be positive integers. We set N = m1m2 − 1, d = m1 +m2 − 2, and define

γr(m1,m2) =

d−N+1+r∑
k=0

(−1)k
(
d+ 1− k
N − r

)
(N − k)!

 ∑
i+j=k

(
m1

i

)
(m1 − 1− i)!

·
(
m2

j

)
(m2 − 1− j)!

 .

Further, we define the homogeneous polynomial

H(m1,m2) = γ1(m1,m2)sN t1 + · · ·+ γN (m1,m2)s1tN ∈ Z[s, t]. (4.25)

Let c =
(∑

o∈O #Ao
)

+ #S denote the codimension of the linear space L ∩Orth(B).

Theorem 4.8.1. Let r ∈ RA×S be a generic reward vector. The number of isolated critical points
of the linear function η 7→ 〈r, η〉 on the relative interior of the boundary component B is upper
bounded by the coefficient of the monomial s#S×#A−ctc in the polynomial

H =
∏
o∈O

H(#β−1(o),#A) ∈ Z[s, t].

The number of isolated complex critical points of the linear function η 7→ 〈r, η〉 on the complex
variety X ∩ L ∩ Orth(B) is also bounded above by this number, and equal to it if we replace L ∩
Orth(B) with a generic affine linear space of codimension c.
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Remark 4.8.2. It is natural to ask whether for a general choice of the matrix Mα the bound from
Theorem 4.8.1 on the number of complex critical points on the variety X ∩ L ∩ Orth(B) is tight.
We encountered examples that exhibit both behaviours, depending on the combinatorics of the
observation kernel β. This is subject to future research.

In the following two examples we demonstrate that there are instances for which the main result
of this section, Theorem 4.8.1, is tight, and instances for which it fails to be tight. In both cases we
consider a ,,general” transition kernel α ∈ ∆S×AA and a generic reward vector r ∈ RS×A. We further
compare the bounds from Chapter 2, namely Theorem 2.3.7, to Theorem 4.8.1 and Theorem 4.6.3.
We start by demonstrating that the bound from Theorem 4.8.1 needs not be tight.

Example 4.8.3. Consider the following POMDP describing a blind controller: We fix 4 states
s1, s2, s3, s4, one observations and 3 actions a1, a2, a3. Then the variety X is equal to the affine
variety M4×3 of rank one 4× 3 matrices. It defines a projective variety of dimension 5 in P11. The
polynomial H from the statement of Theorem 4.8.1 describes its polar class and evaluates to the
following expression:

H = 0s11t1 + 6s10t2 + 16s9t3 + 27s8t4 + 24s7t5 + 10s6t6 ∈ Z[s, t].

We identify α ∈ ∆S×AS with the product of the following three column stochastic matrices.

α(· | (·, a1)) =
1

7


0 1 3 2
2 3 0 1
3 1 1 1
2 2 3 3

 , α(· | (·, a2)) =
1

7


3 0 1 1
1 1 2 3
2 4 4 1
1 2 0 2

 , α(· | (·, a3)) =
1

7


2 0 4 0
1 3 0 2
0 0 2 3
4 4 1 2

 .

We set γ = 1, and the affine linear space L is defined by the vanishing of the following expressions:

ls1 = 7η1,1 + 4η1,2 + 5η1,3 − η2,1 − 3η3,1 − η3,2 − 4η3,3 − 2η4,1 − η4,2

ls2 = −2η1,1 − η1,2 − η1,3 + 4η2,1 + 6η2,2 + 4η2,3 − 2η3,2 − η4,1 − 3η4,2 − 2η4,3

ls3 = −3η1,1 − 2η1,2 − η2,1 − 4η2,2 + 6η3,1 + 3η3,2 + 5η3,3 − η4,1 − η4,2 − 3η4,3

ls4 = −2η1,1 − η1,2 − 4η1,3 − 2η2,1 − 2η2,2 − 4η2,3 − 3η3,1 − η3,3 + 4η4,1 + 5η4,2 + 5η4,3

η1,1 + η1,2 + η1,3 + η2,1 + η2,2 + η2,3 + η3,1 + η3,2 + η3,3 + η4,1 + η4,2 + η4,3 − 1.

Direct computation confirms that the number of critical points of a generic linear objective function
on the state aggregation variety X ∩L is 24. This is different from the coefficient 27 of the monomial
s8t4 of H, whence Theorem 4.8.1 does not give a sharp bound on the number of complex critical
points. This discrepancy is not explained with our particular choice of α, but can be observed for
every generic choice.

In the proof of Theorem 4.6.3 we express the positive part of X ∩ L as a complete intersection
of the following 6 quadratic equations with the 8-dimensional affine linear space L:

− η1,1(η2,1 + η2,2 + η2,3) + η2,1(η1,1 + η1,2 + η1,3)

− η1,2(η2,1 + η2,2 + η2,3) + η2,2(η1,1 + η1,2 + η1,3)

− η1,1(η3,1 + η3,2 + η3,3) + η3,1(η1,1 + η1,2 + η1,3)

− η1,2(η3,1 + η3,2 + η3,3) + η3,2(η1,1 + η1,2 + η1,3)

− η1,1(η4,1 + η4,2 + η4,3) + η4,1(η1,1 + η1,2 + η1,3)

− η1,2(η4,1 + η4,2 + η4,3) + η4,2(η1,1 + η1,2 + η1,3).
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This complete intersection is the union of the state aggregation variety X ∩L with a linear space of
dimension 5, so in this particular instance no new critical points are introduced away from X ∩ L.
Theorem 4.6.3 gives a bound to the number of complex critical points of a generic linear objective by
invoking the results from [NR09], which evaluates to 26

(
7
5

)
= 5376. In the proof of Theorem 4.6.3 we

can replace the algebraic degree of polynomial optimization with the sparse analogue introduced
in Chapter 2, in particular with the BKK bound of the corresponding Lagrange system. This
evaluates to the number 252.

Example 4.8.4. Consider the following POMDP: We fix 6 states s1, s2, s3, s4, s5, s6, two observa-
tions o1, o2 and 2 actions a1, a2. The observation kernel β : S −→ O maps s1, s2 and s3 to o1 and
maps s4, s5 and s6 to o2. Then the variety X is the product M3,2 ×M3,2, where M3,2 denotes the
affine variety of rank one 3× 2 matrices. It defines a projective variety of dimension 7 in P11.

X =
{
η ∈ R4×3 : rank

η1,1 η1,2

η2,1 η2,2

η3,1 η3,2

 = rank

η4,1 η4,2

η5,1 η5,2

η6,1 η6,2

 = 1
}
.

For some choice of α we obtain the following defining equations of L:

ls1 =2/3η1,1 + 2η2,1 + 3/4η3,1 − η3,2 − η4,1 + 2/3η4,2 +−2/5η5,1 + η5,2 − 3η6,1 + 1/5η6,2

ls2 =− 2/3η1,1 − η2,1 − η2,2 +−1/2η3,1 + 2/3η3,2 − η4,1 +−1/3η4,2 + 2/5η5,1 − η5,2 + 2η6,1 +−2/5η6,2

ls3 =− 2/3η1,1 + η1,2 + η2,1 − 2η2,2 + 5/4η3,1 + η3,2 + 3η4,1 +−1/3η4,2 +−3/5η5,1 + 2η5,2 − 2η6,1

ls4 =− 1/3η1,1 +−1/3η1,2 − 3η2,2 +−1/2η3,1 − η4,1 + 5/3η4,2 − η5,2 + 3η6,1 +−3/5η6,2

ls5 =2/3η1,1 +−1/3η1,2 + η2,1 + 3η2,2 +−1/2η3,1 + 1/3η3,2 + 2η4,1 − η4,2 + η5,1 + 2η6,1

ls6 =1/3η1,1 +−1/3η1,2 − 3η2,1 + 3η2,2 +−1/2η3,1 − η3,2 − 2η4,1 +−2/3η4,2 +−2/5η5,1 − η5,2 − 2η6,1 + 4/5η6,2

− 1 + η1,1 + η1,2 + η2,1 + η2,2 + η3,1 + η3,2 + η4,1 + η4,2 + η5,1 + η5,2 + η6,1 + η6,2.

Direct computation shows that a general linear objective function has 34 critical points on the state
aggregation variety. Contrary to Example 4.8.3 this is equal to the bound from Theorem 4.8.1:
The polar class H of χ is represented by the following polynomial:

H = 0s10t2 + 0s9t3 + 9s8t4 + 247t5 + 34s6t6 + 24s5t7 + 9s4t8 ∈ Z[s, t].

Evaluating the bound from Theorem 4.6.3 yields 24
(

5
3

)
= 160, while the KKT bound to the Lagrange

system evaluates to the slightly sharper bound 128. In this instance, the complete intersection
described in the proof of Theorem 4.6.3 comprises three additional components in dimension 7, of
respective degrees 1, 3 and 3. For a generic linear objective function these contribute an additional
six critical points that do not live on the variety X ∩ L.

The rest of this chapter is devoted to the proof of Theorem 4.8.1. Our approach is to compute
the polar degrees of X by proving the following Theorem:

Theorem 4.8.5. The polar class of the projective closure X of X is represented by the polynomial

t
∏
o∈O

H(#β−1(o),#A) ∈ Z[s, t].

Although we already encountered polar degrees in this thesis, we will now remind the reader of
all necessary definitions and relate them to linear optimization, showing that Theorem 4.8.1 is an
easy corollary of Theorem 4.8.5. The rest of this section is then devoted to a proof of Theorem 4.8.5.
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For the rest of the section X ⊆ Pn, Y ⊆ Pm are projective varieties. In this section we denote

π1 : Pm+n+1 99K Pn, and π2 : Pm+n+1 99K Pm

the rational projections on the first n+ 1 and on the last m+ 1 coordinates respectively. We now
remind the reader of the definition of conormal varieties.

Definition 4.8.6. We define the projective conormal variety NX of X to be the closure

NX = {(x, u) ∈ Pn × (Pn)∨ : x ∈ Xsm and u ∈ T⊥X,x},

of all pairs (x, u), where x is a smooth point and u a hyperplane, tangent to X at x.

Definition 4.8.7. Let
[NX ] = δ1(X)snt1 + · · ·+ δn(X)s1tn

denote the class of NX in the cohomology ring H∗(Pn × Pn) = Z[s, t]/〈sn+1, tn+1〉. We call [NX ]
the polar class of X, and for each i = 1, . . . , n we call δi(X) the i-the polar degree of X.

Remark 4.8.8. Since NX is a variety of codimension n+ 1 the above definition makes sense. The
polar degrees satisfy δi(X) = # (NX ∩ L× L′), where L ⊆ Pn and L′ ⊆ (Pn)∨ are generic linear
subspaces of dimension n+ 1− i and i respectively. In particular, it holds δi(X) = 0 for all i with
i > dim(X) + 1. For more on polar degrees we point the reader to [Pie78]. We remark that in our
notation, the indices of polar degrees start from 1, while in some sources they start from zero.

The reason we are interested in polar degrees is their relation to linear optimization.

Definition 4.8.9. Let X ⊆ Cn be a an affine variety. For each i = 0, . . . , n− 1 we define the i-th
sectional linear optimization degree ci(X) of X as follows: Let L be a general affine linear space
of codimension i. We define ci(X) to be the number of critical points of a generic linear functional
over the intersection Xsm ∩ L of the smooth locus with L.

The following is a consequence of Corollary 6.3 in [MRWW23]:

Corollary 4.8.10. Let X ⊆ Pn be the projective closure of the affine cone over a projective variety
living in Pn−1, and let X be of dimension d. Then for each i = 0, . . . , d it holds δi+1(X) = ci(X).

Theorem 4.8.1 now follows directly from Theorem 4.8.5.

Proof of Theorem 4.8.1. The number of isolated complex critical points of the linear function η 7→
〈r, η〉 over the complex variety X ∩ L ∩ Orth(B) is upper bounded by, and generically equal to
the sectional linear optimization degree ck(X ) of X . By Corollary 4.8.10 the latter is equal to
the polar degree δk+1(X ), where k is the codimension of L ∩ Orth(B). This is the content of
Theorem 4.8.5.

The rest of this section is devoted to the proof of Theorem 4.8.5. It rests on a characterization
of polar degrees of joins of varieties as convolution products in Theorem 4.8.15, and on a description
of of the projective closure X of X as a join of Segre varieties in Proposition 4.8.12. We start by
defining the join.

Definition 4.8.11. Let X ⊆ Pn, Y ⊆ Pm be projective varieties. We define their join to be

J (X,Y ) = {(x0 : · · · : xn : y0 : · · · ym) ∈ Pn+m+1 : (x0 : · · · : xn) ∈ X, (y0 : · · · ym) ∈ Y }.

Equivalently, J (X,Y ) is the closure of the intersection of preimages π−1
1 (X) ∩ π−1

2 (Y ).
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The relation to POMDPs is the following. Let for any natural numbers m1 and m2, N =
m1m2 − 1 the variety Mm1,m2 ,⊆ PN , denote the projective Segre variety of rank one m1 × m2

matrices of dimension d = m1 +m2− 2, and let Mm1,m2 ⊆ Cm1m2 denote its respective affine cone.
Then we have the following theorem:

Proposition 4.8.12. The projective closure X of X is the common join of the point P0, and of all
of the Segre varieties Mβ−1(o),A, where o is an element in the set of observations O.

Proof. As elaborated below the statement of Theorem 4.5.4, the affine variety X is equal to the
product X =

∏
o∈OMβ−1(o),A. In particular, the affine cone over the projective closure X equals

the product
∏
o∈OMβ−1(o),A × C. When projectivizing we obtain the desired join of varieties.

We need an analogue of the join for bihomogeneus varieties:

Definition 4.8.13. By a slight abuse of notation we denote by J (NX ,Pm) the variety

{((x : y), (u : v)) ∈ Pn+m+1 × (Pn+m+1)∨ : (x, u) ∈ NX}.

Equivalently,J (NX ,Pm) is the closure of the preimage (π1× π1)−1(NX), and we define J (Pn,NY )
analogously as the closure (π2 × π2)−1(NY ):

{((x : y), (u : v)) ∈ Pn+m+1 × (Pn+m+1)∨ : (y, v) ∈ NY }.

Proposition 4.8.14. The cohomology class of the variety J (NX ,Pm) is represented by

[J (NX ,Pm)] = δ1(X)snt1 + · · ·+ δn(X)s1tn,

which is also the polynomial that represents [NX ]. And analogously

[J (Pn,NY )] = δ1(Y )smt1 + · · ·+ δn(Y )s1tm.

Proof. By symmetry we only treat the first case. Let W ⊆ Pn+m+1, W ′ ⊆ (Pn+m+1)∨ be generic
linear spaces of dimension n + 1 − i and dimension i respectively for i = 1, . . . , n. We denote by
L = π(W ) and L′ = π(W ′) the projections onto the first n+1 variables, having the same dimensions
n+ 1− i and i respectively. By genericity of W and W ′ we have

δi(X) = #NX ∩ L× L′ = #J (NX ,Pm) ∩W ×W ′.

With the aim of computing the polar class of X , we now investigate polar classes of joins.

Theorem 4.8.15. The polar class of the join J (X,Y ) is represented by the product

[NJ (X,Y )] =
(
δ1(X)snt1 + · · ·+ δn(X)s1tn

) (
δ1(Y )smt1 + · · ·+ δn(Y )s1tm

)
of the polynomials that represent the polar classes of and X and Y respectively.

Proof. The idea is to split the defining equations of NJ (X,Y ) into two sets of polynomials in disjoint
families of variables. We now show that the conormal variety NJ (X,Y ) is the intersection of the
varieties J (NX ,Pm) and J (Pn,NY ). Furthermore, at a generic point of NJ (X,Y ) this intersection
is transversal. In particular, the polar class of J (X,Y ) is [J (NX ,Pm)] · [J (Pn,NY )]. Proposition
4.8.14 then finishes the proof.
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Let U ⊆ Pn+m+1 × (Pn+m+1)∨ denote the open subset consisting of all elements with only non
zero entries and let p = ((x0 : · · ·xn : y0 · · · : ym), (u0 : · · · : un : v0 · · · vm)) be an arbitrary element.
We first observe that the desired equality J (NX ,Pm) ∩ J (Pn,NY ) = NJ (X,Y ) holds on U .

p ∈ NJ (X,Y ) ⇐⇒ (x : y) ∈ J (X,Y ) and (u : v) ∈ T⊥J (X,Y ),(x:y)

⇐⇒ x ∈ X, y ∈ Y, x ∈ T⊥X,x, y ∈ T⊥Y,y
⇐⇒ p ∈ J (NX ,Pm) and p ∈ J (Pn,NY ).

To see transversality of the intersection, it suffices to observe that the bihomogeneous defining
equations of J (NX ,Pm) and J (Pn,NY ) are in disjoint sets of variables. By the same argument,
the intersection J (NX ,Pm) ∩ J (Pn,NY ) is irreducible and hence equal to NJ (X,Y ).

We recall the following description of polar classes of Segre varieties:

Corollary 4.8.16 (Corollary 15, [CJM+21]). The polar class of the Segre variety Mm1,m2 is
represented by the polynomial

[NMm1,m2
] = H(m1,m2)

from equation (4.25). In other words, for r = 1, . . . , N,N = m1m2 − 1, d = m1 +m2 − 2 it holds

α(·)δr(Mm1,m2) =

d−N+1+r∑
k=0

(−1)k
(
d+ 1− k
N − r

)
(N − k)!

 ∑
i+j=k

(
m1

i

)
(m1 − 1− i)!

·
(
m2

j

)
(m2 − 1− j)!

 .

We finally prove Theorem 4.8.5, it is now a direct consequence of the previous results:

Proof of Theorem 4.8.5. Combining the description of X as a join of Segre varieties from Proposi-
tion 4.8.12 with Theorem 4.8.15 and Corollary 4.8.16 gives the desired result.

4.9 Conclusion

In this chapter we initiated the study of Markov decision problems from a new, geometric perspec-
tive. Our main object of interest was the set of state action frequencies, which we proved to be
the positive part of the state aggregation variety. Based on this description, an algebraic optimiza-
tion of the long term reward is possible by solving KKT and Lagrange equations. We conducted
various numerical experiments based on this approach. Finally, by computing polar degrees of the
state aggregation variety we are able to characterize the algebraic complexity of long term reward
optimization.
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Chapter 5

Discriminants and tropical
implicitization

Tropical implicitization means computing the tropicalization of a unirational variety from its
parametrization. In the case of a hypersurface, this amounts to finding the Newton polytope
of the implicit equation, without computing its coefficients. We present a new implementation of
this procedure in Oscar.jl. It solves challenging instances, and can be used for classical implicitiza-
tion as well. We also develop implicitization in higher codimension via Chow forms, and we pose
several open questions.

5.1 Introduction

Let X ⊂ Cn be a d-dimensional affine variety defined as the closure of the image of a map

f : Cd 99K Cn, t 7−→
(
f1(t), f2(t), . . . , fn(t)

)
. (5.1)

Here t = (t1, . . . , td), and f1, f2, . . . , fn ∈ C(t) are rational functions. The problem of implicitiza-
tion asks for the defining polynomial equations of X in the coordinates x = (x1, . . . , xn) on Cn.
When f1, . . . , fn ∈ Q(t) have rational coefficients, these equations can be computed via symbolic
elimination [DCO97, Chapter 3, §3]. More precisely, one eliminates t1, . . . , td from

x1 − f1(t) = x2 − f2(t) = · · · = xn − fn(t) = 0 (5.2)

using Gröbner basis or resultant techniques. Unfortunately, these methods run out of steam for
larger instances. This has motivated the question whether we can obtain interesting partial infor-
mation in cases where computing the ideal of X is out of reach.

Tropical geometry [MS15] replaces an algebraic variety by a polyhedral complex which en-
codes many of its geometric properties. A commonly used slogan is that this complex serves
as a combinatorial shadow of the original variety. The tropicalization trop(X) of X is a pure
d-dimensional polyhedral fan in Rn, satisfying a balancing condition. The task of tropical implic-
itization [ST08, STY06] is to compute trop(X) from the data in (5.1). This was the goal in the
paper [SY08], which includes demonstrations of an implementation called TrIm. Theorem 6.4 in
[SY08] suggests the following two-step procedure for performing tropical implicitization:

1. Compute the tropicalization of the graph Γf of f , given by the n equations in (5.2). The
result is the d-dimensional balanced fan trop(Γf ) in the product space Rd × Rn.
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2. Project this fan to Rn and assign appropriate multiplicities to each cone in the image.

This is illustrated in Figure 5.2. Computing trop(Γf ) in step 1 can be complicated in general. It
involves the computation of a tropical basis for the ideal generated by x1 − f1(t), . . . , xn − fn(t).

In this chapter, we consider two different assumptions on the map f . Both assumptions circum-
vent the tropical basis computation, and are relevant in practice. First, in Section 5.2, we assume
that the functions fi are Laurent polynomials which are generic with respect to their Newton poly-
topes. This is the assumption in [ST08, STY06, SY08]. It reduces step 1 above to computing the
stable intersection of n codimension one fans in Rd×Rn. Second, in Section 5.3, we assume that f
is the composition of a linear map λ : Cd → C` followed by a Laurent monomial map µ : C` 99K Cn.
In symbols, we have f = µ◦λ. This allows to compute trop(X) as the linear projection of a tropical
linear space in R`. For details see [MS15, Section 5.5]. An important special case arises from the
computation of tropical A-discriminants [DFS07].

Tropical implicitization is a first step towards classical implicitization. Let X = V (F ) be
the hypersurface defined by a polynomial F ∈ C[x]. Then trop(X) is the union of the (n − 1)-
dimensional cones in the normal fan of the Newton polytope N (F ), decorated with multiplicities.
From trop(X) we can recover N (F ). The key ingredient is a vertex oracle which, for a generic
weight vector w ∈ Rn, returns the vertex v of N (F ) which minimizes the dot product with w on
N (F ). The algorithm realizing the oracle is suggested by [DFS07, Theorem 2.2]. We provide an
implementation using Oscar.jl and use it to recover N (F ) via the algorithm in [Hug06]. Once
we have the Newton polytope N (F ), we can find F via (numerical) linear algebra. The task is to
compute the unique kernel vector of a matrix constructed via numerical integration [CGKW00] or
sampling [BKSW18, EKKB13]. Sampling is preferred when the fi have rational coefficients. We
can then use the parametrization to find rational points on X, and F can be computed using exact
arithmetic over Q. However, the size of the matrix is the number of lattice points in N (F ), and
we may have to resort to floating point arithmetic when this number is too large. An alternative is
rational reconstruction from linear algebra over finite fields. We discuss these techniques in Section
5.4. We use them to solve instances for which elimination via Gröbner bases does not terminate
within reasonable time.

If the fi are Laurent polynomials which are generic with respect to their Newton polytopes, as
in Section 5.2, then N (F ) is a mixed fiber polytope [EKP07, EK08, STY06]. Our implementation
in Oscar.jl for computing N (F ) gives a practical way of computing mixed fiber polytopes.

When dimX < n−1, we present a new way of finding its implicit equations from trop(X). This
is the topic of Section 5.5. The idea is to pass through the Chow form Ch(X) of X [DS95]. The
polytope we compute is the Chow polytope C(X), which is a linear projection of the Newton polytope
N (Ch(X)). This computation rests on a result by Fink [Fin13], which describes the (weighted)
normal fan of C(X) in terms of trop(X). We explain how to recover Ch(X) from C(X), using the
parameterizing functions and an appropriate ansatz. Defining equations for X are obtained from
Ch(X) in the standard manner [DS95, Proposition 3.1].

The implementation of the algorithms supporting this work have benefited from the flexibility
provided by Oscar.jl. The possibility to combine polyhedral computations with symbolic linear
and nonlinear algebra in the same environment has greatly simplified the task. This feature has
been our incentive to revisit tropical implicitization. Throughout the chapter, we include several
open problems and computational challenges which we hope will inspire the reader to join this
effort. This thesis relies heavily on software and data. These materials are made available at
https://mathrepo.mis.mpg.de/TropicalImplicitization, in the repository MathRepo at MPI-
MiS [Fev22].
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5.2 Generic tropical implicitization

In this section, we start with n Laurent polynomials in n variables with complex coefficients:

fi =
∑
a∈Ai

ci,a t
a ∈ C[t±1

1 , . . . , t±1
d ] for i = 1, 2, . . . , n.

We use these Laurent polynomials in (5.1). The tuple f = (f1, . . . , fn) gives a map (C∗)d → (C∗)n.
Let X ⊂ (C∗)n be the closure of the image of f . Our first task is to find its tropicalization trop(X).
In Section 5.4, we use trop(X) for classical implicitization. As a set,

trop(X) = {w ∈ Rn : inw(I(X)) does not contain a monomial } ⊂ Rn.

Here I(X) ⊂ C[x±1
1 , . . . , x±1

n ] is the vanishing ideal of X, and inw takes the initial ideal with respect
to the weight vector w. It is well known that trop(X) is the support of a fan Σ of dimension dim(X).
This fan is not unique, but for the purposes of this text we can choose any fan Σ with support
trop(X). Assigning a multiplicity mσ to each top dimensional cone σ ∈ Σ in the appropriate way
[MS15, Definition 3.4.3], the fan Σ is balanced [MS15, Theorem 3.4.14]. We will see that these
multiplicities are crucial when using trop(X) for implicitization.

Classically, the variety X ⊂ (C∗)n is the closure of the projection Γf → (C∗)n of the graph

Γf = {(x, t) ∈ (C∗)n × (C∗)d : x1 − f1(t) = 0, . . . , xn − fn(t) = 0}

onto the n x-coordinates. It turns out this has an easy tropical analog.

Theorem 5.2.1. Let X = im f ⊂ (C∗)n. The tropical variety trop(X) is the image of the projection
trop(Γf )→ Rn, where trop(Γf ) ⊂ Rn × Rd is the tropicalization of the graph of f .

This is an instance of [STY06, Theorem 2.1]. See also [SY08, Theorem 6.4]. We can thus obtain
trop(X) from trop(Γf ) via a simple projection. However, Theorem 5.2.1 is only useful in practice
when trop(Γf ) is easy to compute. Our next theorem describes trop(Γf ) under the assumption that
the fi are generic with respect to their Newton polytopes N (fi). It uses the following notation.
For a polytope P ⊂ Rk and a vector w ∈ (Rk)∗, we write Pw = {p ∈ P : w ·p ≤ w ·q for all q ∈ P}.
In words, Pw is the face of P supported by w.

Theorem 5.2.2. Suppose fi is generic with respect to N (fi), and let Pi = N (xi−fi(t)) ⊂ Rn×Rd
for i = 1, . . . , n. The tropical variety trop(Γf ) is the support of a d-dimensional subfan of the
normal fan of P = P1 + · · ·+Pn. It consists of the normal cones σ of P for which the face polytopes
(P1)w, . . . , (Pn)w have positive mixed volume MVw in the affine lattice of Pw, for each w ∈ int(σ).
Moreover, the multiplicity mσ of σ in trop(Γf ) equals MVw.

This is [ST08, Theorem 4.3]. We illustrate this theorem for a parametric plane curve.

Example 5.2.3. Consider the parametrization f = (f1, f2) : C∗ −→ (C∗)2 given by

f1 = 11 t2 + 5 t3 − t4 and f2 = 11 + 11 t+ 7 t8.

The image is the plane curve C = im f given by the implicit equation F (x, y) = 0, with

F = 2401x8 − 1372x6y − 422576x5y + · · ·+ y4 + · · ·+ 1247565503668. (5.3)
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Figure 5.1: Newton polytopes P1, P2 and N (F ) from Example 5.2.3.

This has 25 terms, one for each lattice point of N (F ), shown on the right side of Figure 5.1. The
Newton polytopes of x− f1 and y − f2 of Γf are the triangles seen on the left side.

The tropical curve trop(Γf ) can be constructed according to Theorem 5.2.2. It is shown in blue
on the right of Figure 5.2. The result is a balanced, one-dimensional fan with four rays:

trop(Γf ) = R+ · (1, 0, 0) ∪ R+ · (−4,−8,−1) ∪ R+ · (0, 1, 0) ∪ R+ · (2, 0, 1),

with respective multiplicities 2, 1, 8 and 1. We demonstrate how to obtain these multiplicities.
Consider the primitive ray generator w = (2, 0, 1), revealing the face polytopes

(P1)w = conv((0, 0, 2), (1, 0, 0)) and (P2)w = conv((0, 0, 0), (0, 1, 0)).

The multiplicity of R+ · (2, 0, 1) in trop(Γf ) can be computed as the mixed volume of the line seg-
ments (P1)w and (P2)w inside the 2-dimensional lattice define by the affine hull of their Minkowski
sum. This is the mixed volume MVw, and we find that it is equal to 1.

Now that we know trop(Γf ) and its multiplicities (when the Laurent polynomials fi are generic),
and we know that trop(X) is obtained from its projection, it remains to determine the multiplicities
of trop(X) from those of trop(Γf ). The answer is given by [ST08, Theorem 1.1], which is the second
part of [SY08, Theorem 6.4]. In order to recall the formula, we introduce some more notation. Let
ΣX be a fan in Rn whose support is trop(X), and ΣΓf a fan in Rn×Rd whose support is trop(Γf ).
Let v be a point in the interior of a top dimensional cone σv ∈ ΣX . We write Lv for the linear span
of a small open neighborhood of v in trop(X). Similarly, w ∈ int(σw) for a top dimensional cone
σw ∈ ΣΓf defines a linear space Lw. If the projection Γf → X is generically finite of degree δ, then
the multiplicity of σv ∈ ΣX is

mσv =
1

δ

∑
w∈π−1(v)

mσw · index
(
Lv ∩ Zn : π(Lw ∩ Zn+d)

)
. (5.4)

Here π is the projection Rn × Rd → Rn and the sum is over all points w in the pre-image of v
under the map π|trop(Γf ) : trop(Γf ) → trop(X). It is assumed that there are only finitely many
such points, and each of them lies in the interior of a top dimensional cone of ΣΓf .
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Figure 5.2: Classical (left) and tropical (right) implicitization of a parametric plane curve.

With the choice of weights (5.4), the image fan is balanced. This is a non-trivial fact, derived
in a more general setting in [MS15, Lemma 3.6.3]. See also [MS15, Theorem 6.5.16] for a textbook
discussion of tropical implicitization in the context of geometric tropicalization.

Example 5.2.4. According to Theorem 5.2.1, the tropical curve trop(Γf ) projects to trop(C).
This is displayed on the right of Figure 5.2, where trop(C) is shown in orange as the fan

trop(C) = R+ · (1, 0) ∪ R+ · (−1,−2) ∪ R+ · (0, 1).

This fan is balanced with ray multiplicities 4, 4, 8, in that order. We demonstrate the computation
of mρ = 4 for the first ray ρ = R+ · (1, 0) using (5.4). The ray ρ̂ = R+ · (2, 0, 1) of Trop(Γf ) projects
to ρ. Its primitive ray generator (2, 0, 1) projects to the imprimitive lattice vector (2, 0). The
contribution of ρ̂ = R+ · (2, 0, 1) to the multiplicity mρ is the product of two numbers: its intrinsic
multiplicity mρ̂ = 1, and the lattice index 2. The ray R+ · (1, 0, 0) also projects to ρ, which leads
to a total of mρ = 1 · 2 + 2 · 1. The tropical curve trop(C) equals the normal fan of the Newton
polytope N (F ), displayed on the right of Figure 5.1.

The discussion above leads to Algorithm 1, which makes the results in this section effective. It
takes the Newton polytopes Qi = N (fi) as an input, and returns the tropicalization of X = im f .
Here the Laurent polynomials fi are assumed to be generic with respect to their Newton polytopes
Qi. The output is a set of pairs (mτ , τ), where τ ⊂ Rn is a cone, and mτ is a positive integer. The
tropical hypersurface trop(X) is the union of all these cones τ , and the multiplicity of trop(X) at
a generic point x is the sum

∑
x∈τ mτ .

We warn the reader that, although the union of all cones τ forms the support of a fan, the collec-
tion of cones itself is generally not a fan. This representation of a tropical variety is unconventional.
However, it is easy to compute and convenient for our algorithmic purposes.

We now explain Algorithm 1. The polytopes P1, . . . , Pn in line 3 are the Newton polytopes
of the equations x1 − f1, . . . , xn − fn of Γf . The standard basis e1, e2, . . . of Rn+d is indexed by
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Algorithm 1 Generic tropical implicitization

1: procedure getTropicalCycle(Q1, . . . , Qn)
2: for i ∈ {1, . . . , n} do
3: Pi ← conv(ei ∪Qi)
4: P ← P1 + · · ·+ Pn
5: Σ← normal fan of P
6: trop(X)← ∅
7: for σ ∈ Σ do
8: mσ ← MV((P1)σ, . . . , (Pn)σ)
9: if mσ > 0 then

10: τ ← π(σ)
11: mlattice ← index(Lτ ∩ Zn : π(Lσ ∩ Zn+d))
12: trop(X)← trop(X) ∪ {(mlattice ·mσ, τ)}
13: return trop(X)

the variables x1, . . . , xn, t1, . . . , td in that order. Following Theorem 5.2.2, Algorithm 1 selects all
cones σ in the normal fan of P1 + · · ·+ Pn that contribute to the tropicalization trop(Γf ). Line 8
computes the mixed volume mσ = MV((P1)σ, . . . , (Pn)σ), where (Pi)σ = (Pi)w for any w ∈ int(σ).
We denote by π(σ) the projection of σ ⊂ Rn+d to the first n coordinates. The multiplicity with
which π(σ) contributes to trop(X) is computed in lines 8 and 11. Based on (5.4), it is the product
of mσ with the index of the lattice π(Lσ ∩ Zn+d) in the lattice Lτ ∩ Zn. Here Lσ is the linear span
of σ and Lτ = π(Lσ). We implemented Algorithm 1 in Julia.

Example 5.2.5. We show how to apply our Julia implementation to Example 5.2.3:

using TropicalImplicitization, Oscar

R, (t,) = polynomial_ring(QQ,["t"])

f1 = 11*t^2 + 5*t^3 - 1*t^4

f2 = 11 + 11*t + 7*t^8

Q1 = newton_polytope(f1)

Q2 = newton_polytope(f2)

newton_pols = [Q1, Q2]

cone_list, weight_list = get_tropical_cycle(newton_pols)

The lists cone list and weight list returned by our program have four elements each. The first
list contains the planar cones

R+ · (1, 0) , R+ · (1, 0) , R+ · (0, 1) , R+ · (−1,−2),

and the second list consists of their respective multiplicities (2, 2, 8, 4). Notice that R+ · (1, 0)
appears twice, and its multiplicity is split up as 4 = 2 + 2, like in Example 5.2.4.

Problem 5.2.6. Suppose the coefficients of f1, . . . , fn lie in a field with a non-trivial valuation, such
as the p-adic numbers Qp or the Puiseux series C{{t}}. While the theory of tropical implicitization
generalizes nicely to this setting, with balanced fans replaced by balanced polyhedral complexes,
useful algorithms and their implementations are yet to be developed.
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5.3 A-discriminants

We fix a d × n integer matrix A of rank d which has the vector (1, 1, . . . , 1) in its row span. The
associated (d− 1)-dimensional projective toric variety XA is the closure in Pn−1 of the set{

(ta1 : ta2 : · · · : tan) ∈ Pn−1 : t = (t1, . . . , td) ∈ (C∗)d
}
. (5.5)

Here ai denotes the ith column of the matrix A. We are interested in the dual variety X∗A, which
parametrizes hyperplanes that are tangent to XA at some points. Equivalently, X∗A is the closure
in Pn−1 of the set of points x = (x1 : x2 : · · · : xn) such that the hypersurface

{
t ∈ (C∗)d :

n∑
i=1

xi t
ai = 0

}
(5.6)

has a singular point. The variety X∗A is irreducible, and it is usually a hypersurface. The A-
discriminant ∆A is the unique (up to scaling) irreducible polynomial vanishing on X∗A.

In this section we address the following computational problem: given the matrix A, compute
its A-discriminant ∆A. Along the way, we will discover whether X∗A is not a hypersurface. In this
event, we turn to Section 5, and we compute its Chow form instead.

Our algorithm is based on the Horn uniformization, which writes X∗A as the image of a map
whose coordinates are products of linear forms. We follow the exposition given in [DFS07]. For
additional information, see the book references in [GKZ08, Section 9.3.F] and [MS15, Section 5.5].
Given two vectors u and v in (C∗)n, we define u?v = (u1v1 : u2v2 : · · · : unvn) ∈ Pn−1. If U and V
are varieties in Pn−1, neither contained in a coordinate hyperplane, then their Hadamard product
U ? V is the closure of all such points u ? v, where u ∈ U and v ∈ V .

Theorem 5.3.1 (Horn Uniformization). The dual variety X∗A is the Hadamard product in Pn−1 of
the (d− 1)-dimensional toric variety XA with an (n− d− 1)-dimensional linear space:

X∗A = XA ? kernel(A). (5.7)

We illustrate this theorem with several examples. In each of them, we refer to the (d − 1)-
dimensional polytope Q = conv(a1, a2, . . . , an), and we fix an (n − d) × n-matrix B whose rows
span the kernel of A. In polytope language, B is a Gale transform of the polytope Q. For (5.7),
we introduce unknowns u = (u1, . . . , un−d) and we write uB for vectors in kernel(A).

Example 5.3.2 (Determinant). Fix n = k2 and d = 2k − 1, for some integer k ≥ 2, and let A
represent the linear map that extracts the row sums and column sums of a k × k matrix. Naively,
this matrix has 2k rows, but only 2k− 1 of them are linearly independent. Here Q = ∆k−1×∆k−1

is the product of two (k − 1)-simplices. The toric variety XA consists of k × k matrices of rank 1
and X∗A consists of k× k matrices of rank ≤ k− 1. We parametrize X∗A by the Hadamard product
of a rank 1 matrix with a matrix whose row and columns are zero. E.g., for k = 3, the Horn
uniformization writes all singular 3× 3 matrices as follows: t1t4 u1 t1t5(u2 − u1) t1t6(−u2)

t2t4(u3 − u1) t2t5(u1 − u2 − u3 + u4) t2t6(u2 − u4)
t3t4(−u3) t3t5(u3 − u4) t3t6 u4

 . (5.8)

This matrix has (t−1
4 , t−1

5 , t−1
6 )t in its right kernel and (t−1

1 , t−1
2 , t−1

3 ) in its left kernel. The A-
discriminant ∆A is the determinant of a square matrix, which obviously vanishes on (5.8).
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Example 5.3.3 (Resultant). The resultant of a square system of homogeneous polynomials is the
A-discriminant where A is the Cayley configuration of the given monomial supports. We examine
the Sylvester resultant ∆A of two binary quadrics (d = 3, n = 6). We set

A =

 1 1 1 0 0 0
0 0 0 1 1 1
0 1 2 0 1 2

 and B =

 1 −2 1 0 0 0
0 0 0 1 −2 1
1 −1 0 −1 1 0

 .
This yields the following parametrization for pairs of univariate quadrics with a common zero:

x1 + x2 z + x3 z
2 = t1(t3u1 z − u1 − u3)(t3 z − 1),

x4 + x5 z + x6 z
2 = t2(t3u2 z − u2 − u3)(t3 z − 1).

These Horn uniformizations exist for resultants of polynomials in any number of variables.

Example 5.3.4 (Hyperdeterminant). The hyperdeterminant of a multidimensional tensor vanishes
whenever the hypersurface defined by the associated multilinear form is singular. In our notation,
this is the A-discriminant ∆A where the columns of A are the vertices of a product of simplices.
As an illustration, we here present the Horn uniformization for the hyperdeterminant of format
2× 2× 2. Here n = 8 and our configuration is the regular 3-cube:

A =


1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

 and B =


1 −1 −1 1 0 0 0 0
0 0 0 0 1 −1 −1 1
1 −1 0 0 −1 1 0 0
1 0 −1 0 −1 0 1 0

 .
These two matrices yield the following map from C8 into the space of 2× 2× 2 tensors

x000 = t1(u1 + u3 + u4), x001 = t1t4(−u1 − u3), x010 = t1t3(−u1 − u4), x011 = t1t3t4u1,
x100 = t1t2(u2 − u3 − u4), x101 = t1t2t4(u3 − u2), x110 = t1t2t3(u4 − u2), x111 = t1t2t3t4u2.

Implicitization of this parametrization gives us the hyperdeterminant:

∆A = x2
000x

2
111 + x2

001x
2
110 + x2

011x
2
100 + x2

010x
2
101 + 4x000x011x101x110 + 4x001x010x100x111

− 2x000x001x110x111 − 2x000x010x101x111 − 2x000x011x100x111

− 2x001x010x101x110 − 2x001x011x100x110 − 2x010x011x100x101.

We now return to tropical implicitization. Our aim is to compute the tropical variety trop(X∗A)
directly from A. Here we identify X∗A with its affine cone in (C∗)n. If X∗A has codimension 1 then
trop(X∗A) is an (n−1)-dimensional balanced fan in Rn, with a one-dimensional lineality space. This
is the normal fan of the Newton polytope of the A-discriminant ∆A. We recover the polytope from
the fan using Algorithm 3 below; see also [MS15, Remark 3.3.11].

The Horn uniformization of Theorem 5.3.1 gives a convenient way of computing trop(X∗A). It
is an instance of parametrizations given by monomials in linear forms. These admit an elegant
solution to the tropical implicitization problem; see [MS15, Section 5.5]. Let U and V be integer
matrices of size r×m and s× r respectively. The rows of V are v1, . . . , vs ∈ Zr. We denote by λU
the linear map defined by U , and by µV the monomial map specified by V :
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λU : (C∗)m 99K (C∗)r

v 7−→ U v

µV : (C∗)r −→ (C∗)s

x 7−→ (xv1 , . . . , xvs).

The composition of these maps gives the unirational variety YU,V = im(µV ◦ λU ) in (C∗)s.
Its tropicalization trop(YU,V ) is obtained by tropicalizing the map µV ◦ λU . We begin with the
tropical linear space trop(imλU ). This is computed purely combinatorially, as the Bergman fan of
the matroid of U ; see [MS15, Section 4.2]. The monomial map µV tropicalizes to the linear map
V : Rr → Rs. The following result is [DFS07, Theorem 3.1] and [MS15, Theorem 5.5.1].

Theorem 5.3.5. The tropical variety trop(YU,V ) is the image, as a balanced fan via [MS15, Lemma
3.6.3], of the Bergman fan trop(imλU ) under the linear map Rr → Rs given by V .

By Theorem 5.3.1, the affine cone over the A-discriminant in (C∗)n is the variety YU,V with

U =

(
Bt 0
0 Id

)
, V =

(
In At

)
. (5.9)

Here m = s = n and r = n+ d. This leads to Algorithm 2 for computing trop(X∗A).

Algorithm 2 Compute the tropical A-discriminant

1: procedure getTropADisc(A)
2: B ← Gale dual of A

3: U ←
(
Bt 0
0 Id

)
4: V ←

(
In At

)
5: M ← matroid of U
6: trop(imλU )← Bergman fan of M
7: trop(X∗A)← ∅
8: for (mσ, σ) ∈ trop(imλU ) do
9: τ ← V σ

10: mlattice ← index(Lτ ∩ Zn : V (Lσ ∩ Zn+d))
11: trop(X∗A)← trop(X∗A) ∪ {(mσ ·mlattice, τ)}
12: return trop(X∗A)

The matrix B in line 2 is Gale dual to A. Using the symbolic linear algebra func-
tionality provided by Oscar.jl, we find this with the command nullspace(A). Lines 5
and 6 compute the tropicalization trop(imλU ) of the column span of U . They are
based on the Oscar.jl commands Oscar.Polymake.matroid.Matroid(VECTORS = U) and
Oscar.Polymake.tropical.matroid fan{min}(matroid). From line 8 on, the algorithm com-
putes a projection of the Bergman fan trop(imλU ). This is analogous to Algorithm 1.

Example 5.3.6. We compute the tropicalized 2× 2× 2 hyperdeterminant from Example 5.3.4:

A = [1 1 1 1 1 1 1 1; 0 0 0 0 1 1 1 1; 0 0 1 1 0 0 1 1; 0 1 0 1 0 1 0 1]

cone_list, weight_list = get_trop_A_disc(A)

The result consists of 32 7-dimensional cones and a list of their multiplicities, constituting the
weighted normal fan of the Newton polytope N (∆A). The following code uses an implementation
of Algorithm 3 below. It computes N (∆A), its lattice points, and its f-vector.
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Delta = get_polytope_from_cycle(cone_list, weight_list)

f_vec, lattice_pts = f_vector(Delta), lattice_points(Delta)

The result is f vec = (6, 14, 16, 8), and lattice pts contains the 12 exponents of ∆A.

Mixed discriminants [CCD+13] are special cases of A-discriminants. We discuss a non-
trivial one.

Example 5.3.7. We revisit [DFS07, Example 5.1]. Here, d = 4 and n = 8, and we fix the matrix

A =

 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
2 3 5 7 11 13 17 19
19 17 13 11 7 5 3 2

 .
This represents the following sparse system of two polynomial equations in two variables:

x1s
2t19 + x2s

3t17 + x3s
5t13 + x4s

7t11 = x5s
11t7 + x6s

13t5 + x7s
17t3 + x8s

19t2 = 0.

The mixed volume of the two Newton polygons equals 39, so we expect 39 common solutions in
(C∗)2. The A-discriminant ∆A is the condition for two of these solutions to come together. We
know from [DFS07, Example 5.1] that ∆A is a polynomial of degree 126 in x1, . . . , x8. Our software
computes that N (∆A) has 43400 lattice points, and f-vector (45, 92, 63, 16).

Problem 5.3.8. Computing the coefficients of ∆A in Example 5.3.7 amounts to solving a linear
system of equations over Q with 43400 unknowns. This is one of our topics in Section 5.4. Solving
that system is hard for at least two reasons. First, systems of this size are beyond the reach of
symbolic black box solvers on most personal computers at present. Second, the large condition
number and the unbalanced nature of the coefficients of the implicit equation, as in (5.3), hinder
the naive use of numerical linear algebra. It is an interesting challenge to develop symbolic or mixed
symbolic-numerical techniques for solving such problems.

5.4 Polytope reconstruction and interpolation

Suppose that X is an irreducible hypersurface in (C∗)n, given by its parametrization (5.1) or (5.7).
Using Algorithms 1 and 2, we have computed the tropical variety ΣX = trop(X). Thus, ΣX is a
balanced fan of dimension d = n− 1 in Rn, represented by a collection of weighted cones. Our aim
in this section is to compute the polynomial F ∈ C[x1, . . . , xn] that defines the hypersurface X.
We identify X with its closure in Cn. This makes F uniquely defined up to scaling. In particular,
the Newton polytope P = N (F ) is uniquely specified.

Before spelling out the details, we summarize our approach. First, we compute the Newton
polytope P from the balanced fan ΣX . This relies on Theorem 5.4.1 below. Second, we find the
polynomial F from the parametrization by interpolation. Here we use the ansatz

F (x) =
∑

a∈N (F )∩Zn
ca x

a, (5.10)

and we determine the unknown coefficients ca by evaluating (5.10) at many points x on X.
We start with computing P = N (F ). The fan ΣX is dual to the Newton polytope P , namely, it

is the (n−1)-skeleton of the normal fan of P . Taking into account the multiplicities of all maximal
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cones of ΣX , we can go back and forth between P and ΣX . Obtaining ΣX and its multiplicities
from P is straightforward. The multiplicity of an (n − 1)-dimensional cone in ΣX is the lattice
length of the corresponding edge of P . The other direction is more interesting to us: we want to
compute P from the output of Algorithm 1. This is discussed in [MS15, Remark 3.3.11]. The main
tool is a vertex oracle, provided by [DFS07, Theorem 2.2].

Theorem 5.4.1. Let X = V (F ) ⊂ Cn be a hypersurface, whose tropicalization trop(X) ⊂ Rn is
the support of a fan ΣX . For a generic weight vector w ∈ Rn, the vertex N (F )w is

n∑
i=1

 ∑
σ∈ΣX

mσ · IM(w + R+ · ei, σ)

 · ei.
Here ei is a standard basis vector, and the inner sum is over all maximal cones of ΣX .

The intersection multiplicity IM(w + R+ · ei, σ) is the lattice multiplicity of the intersection of
the ray R · ei with the hyperplane Lσ = R · σ. This is the absolute value of the determinant of
any n × n matrix whose columns are ei and a lattice basis for Lσ ∩ Zn. Algorithm 3 implements
Theorem 5.4.1. It finds the vertex N (F )w from the output of Algorithm 1 or 2. Theorem 5.4.1 and
Algorithm 3 are illustrated in Figure 5.3 for the curve in Example 5.2.4.

Algorithm 3 Compute vertex oracle from a tropical hypersurface

1: procedure getVertex(trop(X ∩ (C∗)n), w)
2: v ← 0
3: for i ∈ {1, . . . , n} do
4: for (mσ, σ) ∈ trop(X) do
5: v ← v + IM(w + R+ · ei, σ) ·mσ · ei
6: return v

Figure 5.3: Computing vertices of N (F ) by intersecting trop(X) with w + R≥0 · ei.

Algorithm 3 can be used to compute all vertices of N (F ). A naive approach applies the vertex
oracle to many random vectors w. However, it is not clear how many w would be needed, and
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which stop criterion to use. A deterministic way of constructing N (F ) using a vertex oracle like
Algorithm 3 was proposed by Huggins [Hug06]. Our implementation uses that.

Example 5.4.2. The following Julia code computes a polytope from a tropical hypersurface:

Delta = get_polytope_from_cycle(cone_list, weight_list)

If the variables cone list, weight list are carried over from Example 5.2.5, then Delta is the
yellow polytope shown in Figure 5.3. For cone list, weight list from Example 5.3.6, the polytope
Delta is the Newton polytope of the hyperdeteminant ∆A from Example 5.3.4.

Remark 5.4.3. Under the assumptions of Section 5.2, i.e., the fi are Laurent polynomials which
are generic with respect to their Newton polytopes, N (F ) is a mixed fiber polytope. This was
discovered independently by several authors [EKP07, EK08, STY06]. For instance, in Figure 5.1,
N (F ) is the mixed fiber polytope of P1 and P2. Our implementation of Huggins’ algorithm [Hug06]
combined with Algorithm 3 provides a practical way of computing mixed fiber polytopes. This
includes the computation of fiber polytopes and secondary polytopes [SY08, Section 3].

Once the Newton polytope N (F ) of the defining equation F = 0 of X is known, we can obtain
its coefficients ca in (5.10) using linear algebra. The set B = N (F )∩Zn is a superset of the monomial
support supp(F ) of F . It can be computed in Oscar.jl via the command lattice points. The
interpolation method is most efficient when B is not much larger than supp(F ), that is, few of the
ca in (5.10) are zero. The inclusion B ⊇ supp(F ) can be strict:

Example 5.4.4. Consider the map f : C→ C2 given by f1(t) = a1t
4 + a2t and f2(t) = a3t

2 + a4t
for generic complex numbers a1, a2, a3, a4. Here the implicit polynomial F (x, y) equals

a2
1y

4 − 2a1a
2
3xy

2 + a4
3x

2 − 4a1a3a
2
4xy + 3a1a2a3a4y

2 − a4(a1a
3
4 − a2a

3
3)x+ a2(a1a

3
4 − a2a

3
3)y.

Note that the term y3 does not appear, in spite of it being in N (F ). This shows that some lattice
points in a predicted Newton polytope may never appear with nonzero coefficient.

Problem 5.4.5. We propose to refine the observation in Remark 5.4.3 by predicting the monomial
support of F from the monomial support of f1, . . . , fn. That is, which lattice points in the mixed
fiber polytope, other than its vertices, contribute to the implicit equation?

For simplicity, we work with the superset B ⊇ supp(F ) and allow some coefficients to be
zero. We identify a set P of m points in X, so that the interpolation conditions F (p) = 0 for
p ∈ P uniquely determine F (up to a constant factor). We obtain P ⊂ X by sending random
points in Cd through the parametrization (5.1). The unknown coefficients ca in (5.10) form a
vector c = (ca)a∈B ∈ CB. For each point p ∈ Cn, let pB = (pa)a∈B be the vector of monomials
corresponding to B, evaluated at p. We interpret pB as an element of the dual vector space (CB)∗.
With this set-up, c is the unique vector (up to scaling) satisfying

pB · c = 0 for all p ∈ X.

If the sample points P ⊂ X are sufficiently random and m ≥ |B| − 1, this is equivalent to

pB · c = 0, for all p ∈ P.

The Vandermonde matrix M(B,P) has the vectors pB for its rows, where p ∈ P. It has size m×|B|
and, by the above discussion, the kernel of M(B,P) : CB → Cm is spanned by c.
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Our problem is now reduced to the computation of the one-dimensional kernel of a Vandermonde
matrix M(B,P). Below, we will fix B and P and use the simpler notation M = M(B,P), where
there is no danger for confusion. When the parametrizing functions fi have coefficients in Q, like
in the case of A-discriminants in Section 5.4, we can use P ⊂ Qn. In particular, M has rational
entries, and its kernel can be computed in exact arithmetic.

Example 5.4.6. We now demonstrate our implementation of the above discussion by computing
the implicit equation F from Example 5.2.3. The following code computes the Vandermonde matrix
M(B,P) of size 24 by 25 with rational entries. This is done by plugging 24 random rational numbers
into the parametrization (5.1). The functions f1, f2 are taken from Example 5.2.5, and the Newton
polytope Delta = N (F ) was computed in Example 5.4.2.

B = lattice_points(Delta)

n_samples = length(B)-1

P = sample([f1,f2], n_samples)

M_BP = get_vandermonde_matrix(B,P)

coeffs_F = nullspace(M_BP)[2]

Up to scaling, coeffs F consists of the 25 coefficients of F . Some are shown in (5.3).

Often, in practical computations, the points p ∈ P are approximations of points on X, so the
entries of M are finite precision floating point numbers. In that case, the task of computing kerM
is one of numerical linear algebra. This is not supported in the current version of Oscar.jl. The
standard way to proceed using, for instance, the numerical linear algebra functionality in Julia,
is via the singular value decomposition (SVD) of M . Alternatives include QR factorization with
optimal pivoting and iterative eigenvalue methods. We refer to [BKSW18, Section 5] for such
numerical considerations and pointers to the relevant literature.

When f is defined over Q, one might still want to use floating point computations for speed. Let
ca be a nonzero entry of a generator c for kerM . The vector c−1

a c has rational entries. Its numerical
approximation c̃−1

a c̃ is contaminated by rounding errors. We approximate the entries of c̃−1
a c̃ by

rational numbers using the built in function rationalize in Julia. This has an optional input
tol, so that rationalize(a,tol = e) returns a rational number q which satisfies |q− a| ≤ e. A
sensible choice for tol is 100 · c̃−1

a · ε · σ1/σ|B|−1.
If symbolic computation is preferable to numerical methods, then one might solve the linear

equations over various finite fields and recover rational solutions via the Chinese remainder theorem.
This can be done in a computer algebra system. Sometimes, one is only interested in a fixed finite
field. We illustrate the finite field computation in Oscar.jl.

Example 5.4.7. We seek the A-discriminant for a matrix whose entries are large integers:

A =

 1 1 1 1 1 1
2 3 5 7 11 13
13 8 5 3 2 1


The following code finds that the Newton polytope of ∆A over Q has dimension 3 and f-vector
(12, 18, 8). It terminated on a MacBook Pro with a 3,3 GHz Intel Core i5 processor within 120
seconds. The number of lattice points equals 2295. In order to compute the coefficients of the
A-discriminant, we must solve a linear system of 2294 equations with large integer coefficients. We
solve this over the field with 101 elements instead:
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A = [1 1 1 1 1 1; 2 3 5 7 11 13; 13 8 5 3 2 1];

cone_list, weight_list = get_trop_A_disc(A);

Delta = get_polytope_from_cycle(cone_list, weight_list);

@time mons, coeffs = compute_A_discriminant(A, Delta, GF(101));

For the same computation over the rational numbers, the machine ran out of memory.

We close this section with a combinatorics problem that arises naturally from Remark 5.4.3.

Problem 5.4.8. Let P1, . . . , Pn be polytopes in Rn−1 having v1, . . . , vn vertices. Give a sharp
upper bound in terms of v1, . . . , vn for the number of vertices of their mixed fiber polytope. In
other words, prove an Upper Bound Theorem for f-vectors arising in tropical implicitization.

Example 5.4.9. We illustrate Problem 5.4.8 for three triangles (n = v1 = v2 = v3 = 3). After
many runs for different random configurations, the following example is our current winner:

verts1 = [898 -614; -570 817; 892 -594]

verts2 = [-603 -481; -623 -127; -36 732]

verts3 = [-548 -864; -151 873; 800 -861]

(T1,T2,T3) = convex_hull.([verts1, verts2, verts3])

Delta = get_polytope_from_cycle(get_tropical_cycle([T1,T2,T3])...)

f_vec = f_vector(Delta)

This code computes a mixed fiber polytope that has 25 vertices, 49 edges and 26 facets. Can you
find three triangles in R2 whose mixed fiber polytope has more than 25 vertices?

5.5 Higher codimension

In this section we address the implicitization problem for varieties X that are not hypersurfaces.
The role of the Newton polytope N (F ) of a polynomial F will now be played by the Chow polytope
C(X). We begin by reviewing some definitions from [DS95] and [GKZ08, Chapter 6].

Let X be an irreducible projective variety of dimension d in complex projective space Pn.
Suppose we are given the tropical variety trop(X), a balanced fan of dimension d in Rn+1/R1.
Our goal is to compute the Chow form Ch(X), which is a hypersurface in the Grassmannian
Gr(n − d − 1,Pn). Its points are the linear subspaces of dimension n − d − 1 whose intersection
with X is non-empty. We identify Ch(X) with its defining polynomial of degree deg(X) in primal
Plücker coordinates pi0i1···id , where 1 ≤ i0 < i1 < · · · id ≤ n. The pi0i1···id are the maximal minors
of any (d+ 1)× (n+ 1) matrix whose kernel is the subspace. The Chow form Ch(X) is only well-
defined up to the Plücker relations that vanish on Gr(n − d − 1,Pn). By [Stu08, Theorem 3.1.7],
Ch(X) is a unique linear combination of standard tableaux. In our computations, we always use
that standard representation for Chow forms.

The weight of the Plücker coordinate pi0i1···id is the vector ei0 + ei1 + · · · + eid in Zn, and the
weight of a Plücker monomial is the sum of the weights of its variables, with multiplicity. By
definition, the Chow polytope C(X) is the convex hull of the weights occurring in Ch(X).

Fink [Fin13] gave a combinatorial recipe for constructing the weighted normal fan of the Chow
polytope C(X) from the tropical variety trop(X). Let Ln−d−1 denote the standard tropical linear
space of dimension n−d−1 in Rn+1/R1. Its maximal cones are the orthants spanned by (n−d−1)-
tuples of unit vectors. It is proved in [Fin13, Theorem 4.8] that the weighted normal fan of C(X)
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is the stable sum of trop(X) with the negated linear space −Ln−d−1. The stable sum is a dual
operation to the stable intersection. It always produces a balanced fan of expected dimension.
Hence trop(X)− Ln−d−1 is a balanced fan of codimension 1 in Rn+1/R1. Fink’s result states that
this is the outer normal fan of C(X).

We can compute C(X) from trop(X)−Ln−d−1 by the algorithm for building Newton polytopes
in Section 4, up to an integer translation. Indeed, the normal fan of C(X) and C(X)+t are identical,
for any t ∈ Zn. Algorithm 3 finds vertices of C(X) + t, where t shifts C(X) so that it touches each
coordinate hyperplane. In previous examples, we had t = 0. Indeed, if F is irreducible, then the
polytope N (F ) touches all coordinate hyperplanes. This is not true for the Chow polytope, as
illustrated by the example below. Finding the correct t is an interesting combinatorial problem
which we plan to investigate in a future project.

Example 5.5.1 (d = 1, n = 3). Let X be the curve in C3 which is given by the parametrization

x1 = t(t− 1)(t+ 1), x2 = t2(t+ 1), x3 = t3(t− 1).

The tropical curve is determined by the orders of the coordinate functions at all zeros and poles.
Hence trop(X) is the fan with four rays (1, 2, 3), (1, 1, 0), (1, 0, 1) and (−3,−3,−4). We identify
X with its projective closure in P3, obtained by adding an extra coordinate x0. The tropical line
L1 is spanned by e0, e1, e2, e3, and we form the sum of trop(X) with the negated line −L1. This
2-dimensional fan is the normal fan of the Chow polytope C(X).

We implemented the stable sum using Oscar.jl, and obtain this fan as follows.

cone_list = positive_hull.([[1, 1, 0], [1, 2, 3], [1,0,1], [-1, -1, -4//3]])

weight_list = ones(Int64, 4)

cone_list, weight_list = get_chow_fan(cone_list, weight_list)

The output consists of 16 2-dimensional cones and their multiplicities. A translated version of the
Chow polytope is obtained from this output as in the previous section:

C_translated = get_polytope_from_cycle(cone_list, weight_list)

This is a three-dimensional polytope touching all coordinate hyperplanes. It has vertices

(0, 2, 3, 1), (0, 3, 1, 2), (0, 4, 1, 1), (1, 0, 4, 1), (1, 2, 3, 0), (1, 3, 0, 2),
(1, 4, 0, 1), (1, 4, 1, 0), (2, 0, 1, 3), (2, 0, 4, 0), (2, 4, 0, 0), (3, 0, 0, 3).

To identify the shift t, we compare this to the Chow polytope. We obtain C(X) as the convex hull
of the weights of the Plücker monomials in the Chow form Ch(X) of our curve:

p4
03 − p3

01p13 − 3p2
01p02p13 − 3p01p

2
02p13 − p3

02p13 + 3p2
01p03p13 + 9p01p02p03p13 + 6p2

02p03p13

+p01p
2
03p13 − 5p02p

2
03p13 + 2p2

01p12p13 + p01p02p12p13 + 2p2
01p

2
13 − 2p01p02p

2
13 + 4p2

02p
2
13

+p01p03p
2
13 − 4p01p12p

2
13 − p3

01p23 − 3p2
01p02p23 − 3p01p

2
02p23 − p3

02p23 + 4p2
01p03p23

+11p01p02p03p23 + 7p2
02p03p23 − 2p01p

2
03p23 − 10p02p

2
03p23 + 2p3

03p23 + 2p2
01p12p23

+p01p02p12p23 + 9p2
01p13p23 − p01p02p13p23 + 6p2

02p13p23 + 2p01p03p13p23 − 2p02p03p13p23

−6p01p12p13p23 + 2p01p
2
13p23 + 9p2

01p
2
23 + 2p01p02p

2
23 + 2p2

02p
2
23 − 4p01p03p

2
23 − 2p01p12p

2
23.

We find that C(X) is the 3-dimensional polytope with the following 12 vertices:

(1, 2, 3, 2), (1, 3, 1, 3), (1, 4, 1, 2), (2, 0, 4, 2), (2, 2, 3, 1), (2, 3, 0, 3),
(2, 4, 0, 2), (2, 4, 1, 1), (3, 0, 1, 4), (3, 0, 4, 1), (3, 4, 0, 1), (4, 0, 0, 4).

We conclude that t = (−1, 0, 0,−1). For now, we apply this shift manually.
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After listing all lattice points in C(X), we can compute the Chow form Ch(X) by interpolation.
This is done as follows. For each lattice point u in C(X) we list all standard Plücker monomials
of weight u, and form their linear combination with unknown coefficients. Our ansatz is the sum
of these Zn-homogeneous Plücker polynomials, with distinct unknown coefficients. We generate
random points on the Chow hypersurface as follows. Pick a random point in X and a random
linear space of dimension n − d − 1 through that point. We read off the Plücker coordinates of
that linear space and substitute them into the ansatz. Repeating this process many times gives
the desired linear system of equations in the unknown coefficients. Up to scaling, this system has
a unique solution, namely the Chow form Ch(X).

Example 5.5.2. We use this strategy to recover the Chow form Ch(X) from Example 5.5.1. For
each lattice point u in the polytope C(X), we form the general linear combination of standard
Plücker monomials of weight u. For instance, for u = (2, 2, 2, 2) this linear combination is

γu,1 · p2
01p

2
23 + γu,2 · p01p02p13p23 + γu,3 · p2

02p
2
13.

Our ansatz for the Chow form Ch(X) is the sum of these expressions over all u ∈ C(X) ∩ Z4.
We sample from the Chow hypersurface by picking random matrices of the form[

α0 α1 α2 α3

1 t(t− 1)(t+ 1) t2(t+ 1) t3(t− 1)

]
.

The 2×2 minors of this matrix are the dual Plücker coordinates of the corresponding sample point
in Ch(X) ⊂ Gr(1,P3). We read off its primal Plücker coordinates as follows:

p01 = (t4 − t3)α2 + (t3 + t2)α3, p02 = (t3 − t4)α1 + (t3 − t)α3, p03 = (t3 + t2)α1 + (t− t3)α2,
p12 = (t4 − t3)α0 − α3, p13 = (t3 + t2)α0 + α2, p23 = (t3 − t)α0 − α1.

We substitute many such sample points into the ansatz, and we solve the resulting system of linear
equations for the unknown coefficients γu,i. The output is the desired Chow form. This yields
defining equations for X by setting pij = αixj − αjxi for any α0, . . . , α3 ∈ Q.

5.6 Conclusion

In this chapter, we discussed an application of tropical geometry to computer algebra, namely
implicitization with tropical preprocessing. Guided by many examples it was shown that Oscar.jl
provides excellent capabilities for performing tropical implicitization in practice. Our implemen-
tation in Oscar realizes the vision in [SY08] and fulfils the promise made by TrIm. In particular,
it computes the tropicalization of unirational varieties in many instances. Furthermore, it uses
this tropical data in conjunction with numerical interpolation to compute defining equations of
A-discriminants. In Section 5 we ventured into a setting where the desired hypersurface is not in
an affine or projective space, but inside a Grassmannian. This suggests yet one more problem for
future research.

Problem 5.6.1. Many applications lead to interesting subvarieties of Grassmannians. For instance,
in computer vision, certain cameras are represented by curves and surfaces in Gr(1,P3). Their
tropicalizations lie inside the tropical Grassmannian, and their cohomology classes are computed
by Schubert calculus. It would be desirable to develop tropical implicitization in the setting when
the ambient spaces are Grassmannians, or even flag varieties.
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